Use of Language Model, Phrases and Wikipedia Forward Links for INEX 2009

  • Philippe Mulhem
  • Jean-Pierre Chevallet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6203)


We present in this paper the work of the Information Retrieval Modeling Group (MRIM) of the Computer Science Laboratory of Grenoble (LIG) at the INEX 2009 Ad Hoc Track. Our aim this year was to twofold: first study the impact of extracted noun phrases taken in addition to words as terms, and second using forward links present in Wikipedia to expand queries. For the retrieval, we use a language model with Dirichlet smoothing on documents and/or doxels, and using an Fetch and Browse approach we select rank the results. Our best runs according to doxel evaluation get the first rank on the Thorough task, and according to the document evaluation we get the first rank for the Focused, Relevance in Context and Best in Context tasks.


Information Retrieval Language Model Noun Phrase Query Expansion Context Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiaramella, Y.: Information retrieval and structured documents. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 286–309. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Chevallet, J.-P., Lim., J. H., Le, T.H.D.: Domain knowledge conceptual inter-media indexing, application to multilingual multimedia medical reports. In: ACM Sixteenth Conference on Information and Knowledge Management, CIKM 2007 (2007)Google Scholar
  3. 3.
    Lacoste, C., Chevallet, J.-P., Lim, J.-H., Hoang, D.L.T., Wei, X., Racoceanu, D., Teodorescu, R., Vuillenemot, N.: Inter-media concept-based medical image indexing and retrieval with umls at ipal. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 694–701. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Research and Development in Information Retrieval (1998)Google Scholar
  5. 5.
    Schenkel, R., Suchanek, F.M., Kasneci, G.: Yawn: A semantically annotated wikipedia xml corpus. In: 2. GI-Fachtagung fur Datenbanksysteme in Business, Technologie und Web (BTW 2007), pp. 277–291 (2007)Google Scholar
  6. 6.
    Zhai, C.: Statistical Language Models for Information Retrieval. Morgan and Claypool (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Philippe Mulhem
    • 1
  • Jean-Pierre Chevallet
    • 2
  1. 1.LIG - CNRSGrenobleFrance
  2. 2.LIG - Université Pierre Mendès FranceGrenobleFrance

Personalised recommendations