Immune Inspired Information Filtering in a High Dimensional Space

  • Nikolaos Nanas
  • Stefanos Kodovas
  • Manolis Vavalis
  • Elias Houstis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6209)


Adaptive Information Filtering is a challenging computational problem that requires a high dimensional feature space. However, theoretical issues arise when vector-based representations are adopted in such a space. In this paper, we use AIF as a test bed to provide experimental evidence indicating that the learning abilities of vector-based Artificial Immune Systems are diminished in a high dimensional space.


Relevant Document High Dimensional Space Relevance Score High Dimensional Feature Space Evaluation Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)zbMATHGoogle Scholar
  2. 2.
    Ciesielski, K., Wierzchoń, S.R., Klopotek, M.A.: An immune network for contextual text data clustering. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 432–445. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    de Castro, L.N., Zuben, F.J.V.: An evolutionary immune network for data clustering. In: Proc. of the 6th Brazilian Symposium on Neural Networks, pp. 84–89 (2000)Google Scholar
  4. 4.
    Desjardins, G., Godin, R.: Combining relevance feedback and genetic algorithm in an internet information filtering engine. In: RIAO 2000, pp. 1676–1685 (2000)Google Scholar
  5. 5.
    Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems for datamining. IEEE Trans. on Evolutionary Computation 11(4), 521–540 (2007)CrossRefGoogle Scholar
  6. 6.
    Jerne, N.K.: Towards a network theory of the immune system. Annals of Immunology 125(C), 373–389 (1973)Google Scholar
  7. 7.
    McEwan, C., Hart, E.: Representation in the (artificial) immune system. Journal of Mathematical Modelling and Algorithms 8(2), 125–149 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  9. 9.
    Moukas, A., Maes, P.: Amalthaea: An evolving multi-agent information filtering and discovery system for the www. Autonomous Agents and Multi-Agent Systems 1(1), 59–88 (1998)CrossRefGoogle Scholar
  10. 10.
    Nanas, N., De Roeck, A.: Multimodal dynamic optimisation: from evolutionary algorithms to artificial immune systems. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 13–24. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Nanas, N., De Roeck, A.: Autopoiesis, the immune system and adaptive information filtering. Natural Computing 8(2), 387–427 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Nanas, N., De Roeck, A.: A review of evolutionary and immune inspired information filtering. Natural Computing (2009) (online first),
  13. 13.
    Nanas, N., Kodovas, S., Vavalis, M.: Revisiting evolutionary information filtering. In: Congress on Evolutionary Computation (2010)Google Scholar
  14. 14.
    Nanas, N., Vavalis, M., De Roeck, A.: What happened to content-based information filtering? In: Azzopardi, L., Kazai, G., Robertson, S., Rüger, S., Shokouhi, M., Song, D., Yilmaz, E. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 249–256. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Nanas, N., Vavalis, M., De Roeck, A.: A network-based model for high-dimensional information filtering. To appear in Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (2010)Google Scholar
  16. 16.
    Nanas, N., Vavalis, M., Kellis, L.: Immune learning in a dynamic information environment. In: Artificial Immune Systems, 8th International Conference (ICARIS 2009), pp. 192–205 (2009)Google Scholar
  17. 17.
    Oda, T., White, T.: Immunity from spam: An analysis of an artificial immune system for junk email detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 276–289. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Rocchio, J.: Relevance Feedback in Information Retrieval, ch. 14, pp. 313–323. Prentice-Hall, Upper Saddle River (1971)Google Scholar
  19. 19.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill Inc., New York (1983)zbMATHGoogle Scholar
  20. 20.
    Secker, A., Freitas, A.A., Timmis, J.: AISEC: an artificial immune system for e-mail classification. In: Congress on Evolutionary Computation, pp. 131–139 (2003)Google Scholar
  21. 21.
    Sheth, B.D.: A Learning Approach to Personalized Information Filtering. Master of Science, Massachusetts Institute of Technology (1994)Google Scholar
  22. 22.
    Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28(1), 11–20 (1972)CrossRefGoogle Scholar
  23. 23.
    Stibor, T., Timmis, J., Eckert, C.: On the use of hyperspheres in artificial immune systems as antibody recognition regions. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 215–228. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Tjoa, A.M., Höfferer, M., Ehrentraut, G., Untersmeyer, P.: Applying evolutionary algorithms to the problem of information filtering. In: 8th International Workshop on Database and Expert Systems Application, Toulouse, France, pp. 450–458. IEEE Computer Press, Los Alamitos (1997)Google Scholar
  25. 25.
    Twycross, J., Cayzer, S.: An immune-based approach to document classification. Technical Report HPL-2002-292, HP Research Bristol, UK (2002)Google Scholar
  26. 26.
    Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nikolaos Nanas
    • 1
    • 2
  • Stefanos Kodovas
    • 1
    • 2
  • Manolis Vavalis
    • 1
    • 2
  • Elias Houstis
    • 1
    • 2
  1. 1.Lab for Information Systems and ServicesCentre for Research and Technology - Thessaly (CE.RE.TE.TH) 
  2. 2.Computing and Telecomunications DepartmentUniversity of Thessaly 

Personalised recommendations