Advertisement

Density Preservation and Vector Quantization in Immune-Inspired Algorithms

  • Alisson G. Azzolini
  • Ricardo P. V. Violato
  • Fernando J. Von Zuben
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6209)

Abstract

A clustering algorithm may be designed to generate prototypes capable of minimizing the cumulative distance between each sample in the dataset and its corresponding prototype, denoted as minimum quantization error clustering. On the other hand, some clustering applications may require density-preserving prototypes, more specifically prototypes that maximally obey the original density distribution of the dataset. This paper presents a conceptual framework to demonstrate that both criteria are attainable but are distinct and cannot be fulfilled simultaneously. Illustrative examples are used to validate the framework, further applied to produce an adaptive radius immune-inspired algorithm capable of transiting between both criteria in practical applications.

Keywords

Immune-inspired algorithm Data clustering Vector quantization Density preservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezerra, G.B., Barra, T.V., de Castro, L.N., Von Zuben, F.J.: Adaptive Radius Immune Algorithm for Data Clustering. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 290–303. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    de Castro, L.N., Von Zuben, F.J.: aiNet: An artificial immune network for data analysis. In: Abbass, H.A., Sarker, R.A., Newton, C.S. (eds.) Data Mining: A Heuristic Approach, ch. 12, pp. 231–259. Idea Group Publishing, USA (2001)Google Scholar
  3. 3.
    Chiu, C.Y., Lin, C.H.: Cluster Analysis Based on Artificial Immune System and Ant Algorithm. In: ICNC 2007, vol. 3 (2007)Google Scholar
  4. 4.
    Fukunaga, K., Hayes, R.R.: The reduced parzen classifier. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(4), 423–425 (1989)CrossRefGoogle Scholar
  5. 5.
    Han, J., Kamber, M.: Data Mining: concepts and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)Google Scholar
  6. 6.
    MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability (1967)Google Scholar
  7. 7.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM computing surveys (CSUR) 31(3), 264–323 (1999)CrossRefGoogle Scholar
  8. 8.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall, Boca Raton (1986)zbMATHGoogle Scholar
  9. 9.
    Stibor, T., Timmis, J.: An Investigation on the Compression Quality of aiNet. In: Proceedings of the 2007 IEEE Symposium on Foundations of Computational Intelligence (FOCI 2007), pp. 495–502 (2007)Google Scholar
  10. 10.
    Timmis, J., Neal, M., Hunt, J.: An artificial immune system for data analysis. Biosystems 55(1-3), 143–150 (2000)CrossRefGoogle Scholar
  11. 11.
    Troutman, J.L.: Variational calculus and optimal control: optimization with elementary convexity. Springer, Heidelberg (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alisson G. Azzolini
    • 1
  • Ricardo P. V. Violato
    • 1
    • 2
  • Fernando J. Von Zuben
    • 1
  1. 1.School of Electrical and Computer EngineeringUniversity of Campinas (Unicamp)CampinasBrazil
  2. 2.CPqD, Telecommunications Research CenterCampinasBrazil

Personalised recommendations