Advertisement

A Developmental and Immune-Inspired Dynamic Task Allocation Algorithm for Microprocessor Array Systems

  • Yang Liu
  • Jon Timmis
  • Omer Qadir
  • Gianluca Tempesti
  • Andy Tyrrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6209)

Abstract

This paper presents a high level dynamic task allocation algorithm that is inspired by the biological development process and the immune system. For a microprocessor (μP) array, a program is partitioned into a number of workload oriented tasks with data dependencies and a number of internal status-oriented tasks. Each μP in the array is capable of processing one of these tasks. The algorithm assigns tasks to the μP array that satisfies the requirements of the problem, and it dynamically recovers the system from faults at runtime.

Keywords

Fault Tolerance Task Allocation Task Graph Very Large Scale Integration Fault Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Lemos, R., Timmis, J., Forrest, S., Ayara, M.: Immune-inspired adaptable error detection for automated teller machines. IEEE Transactions on Systems, Man and Cybernetics - Part C 37, 873–886 (2007)CrossRefGoogle Scholar
  2. 2.
    Ortega, C., Mange, D., Smith, S., Tyrrell, A.M.: Embryonics: A bio-inspired cellular architecture with fault-tolerat properties. Genetic Programming and Evolvable Machines 1(3), 187–215 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Tempesti, G., Roggen, D., Sanchez, E., Thoma, Y., Canham, R., Tyrrell, A.: Ontogenetic development and fault tolerance in the POEtic tissue. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 141–152. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Canham, R.O., Tyrrell, A.M.: A hardware artificial immune system and embryonics array for fault tolerant systems. Genetic Programming and Evolvable Machines 4, 359–382 (2003)CrossRefGoogle Scholar
  5. 5.
    Zhang, X., Dragffy, G., Pipe, A., Zhu, Q.: Artificial innate immune system: An instant defence layer of embryonics. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 302–315. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Gerhart, J., Kirschner, M.: Cells, embryos, and evolution: toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability. Blackwell Science, Malden (1997)Google Scholar
  7. 7.
    Cohen, I.R.: Tending Adam’s garden: evolving the cognitive immune self. Elsevier Academic Press, Amsterdam (2000)Google Scholar
  8. 8.
    Abbas, A., Lichtman, A., Pillai, S.: Cellular and Molecular Immunology, 6th edn. Saunders Elsevier, Philadelphia (2007)Google Scholar
  9. 9.
    Haddow, P.C.: Evolvable hardware: A tool for reverse engineering of biological systems. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds.) ICES 2008. LNCS, vol. 5216, pp. 342–351. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Gordon, T.G.W., Bentley, P.J.: Development brings scalability to hardware evolution. In: NASA/DoD Conference on Evolvable Hardware, pp. 272–279. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  11. 11.
    Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: A model for intrinsic artificial development featuring structural feedback and emergent growth. In: IEEE Congress on Evolutionary Computation, pp. 301–308 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yang Liu
    • 1
  • Jon Timmis
    • 1
    • 2
  • Omer Qadir
    • 1
  • Gianluca Tempesti
    • 1
  • Andy Tyrrell
    • 1
  1. 1.Department of ElectronicsUniversity of YorkUK
  2. 2.Department of Computer ScienceUniversity of YorkUK

Personalised recommendations