The Role of the Sodium-Taurocholate Cotransporting Polypeptide (NTCP) and of the Bile Salt Export Pump (BSEP) in Physiology and Pathophysiology of Bile Formation

  • Bruno StiegerEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 201)


Bile formation is an important function of the liver. Bile salts are a major constituent of bile and are secreted by hepatocytes into bile and delivered into the small intestine, where they assist in fat digestion. In the small intestine, bile salts are almost quantitatively reclaimed and transported back via the portal circulation to the liver. In the liver, hepatocytes take up bile salts and secrete them again into bile for ongoing enterohepatic circulation. Uptake of bile salts into hepatocytes occurs largely in a sodium-dependent manner by the sodium taurocholate cotransporting polypeptide NTCP. The transport properties of NTCP have been extensively characterized. It is an electrogenic member of the solute carrier family of transporters (SLC10A1) and transports predominantly bile salts and sulfated compounds, but is also able to mediate transport of additional substrates, such as thyroid hormones, drugs and toxins. It is highly regulated under physiologic and pathophysiologic conditions. Regulation of NTCP copes with changes of bile salt load to hepatocytes and prevents entry of cytotoxic bile salts during liver disease. Canalicular export of bile salts is mediated by the ATP-binding cassette transporter bile salt export pump BSEP (ABCB11). BSEP constitutes the rate limiting step of hepatocellular bile salt transport and drives enterohepatic circulation of bile salts. It is extensively regulated to keep intracellular bile salt levels low under normal and pathophysiologic situations. Mutations in the BSEP gene lead to severe progressive familial intrahepatic cholestasis. The substrates of BSEP are practically restricted to bile salts and their metabolites. It is, however, subject to inhibition by endogenous metabolites or by drugs. A sustained inhibition will lead to acquired cholestasis, which can end in liver injury.


Bile salt transporter Bile formation Cholestasis 



Bruno Stieger is supported by Grant #3100A0-112524/1 from the Swiss National Science Foundation.


  1. Adachi Y, Kobayashi H, Kurumi Y, Shouji M, Kitano M, Yamamoto T (1991) ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles. Hepatology 14:655–659PubMedGoogle Scholar
  2. Agellon LB, Torchia EC (2000) Intracellular transport of bile acids. Biochim Biophys Acta 1486:198–209PubMedGoogle Scholar
  3. Akita H, Suzuki H, Ito K, Kinoshita S, Sato N, Takikawa H, Sugiyama Y (2001) Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump. Biochim Biophys Acta 1511:7–16PubMedCrossRefGoogle Scholar
  4. Alissa FT, Jaffe R, Shneider BL (2008) Update on progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr 46:241–252PubMedCrossRefGoogle Scholar
  5. Alnouti Y (2009) Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci 108:225–246PubMedCrossRefGoogle Scholar
  6. Alrefai WA, Gill RK (2007) Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 24:1803–1823PubMedCrossRefGoogle Scholar
  7. Ananthanarayanan M, Ng OC, Boyer JL, Suchy FJ (1994) Characterization of cloned rat liver Na(+)-bile acid cotransporter using peptide and fusion protein antibodies. Am J Physiol 267:G637–G643PubMedGoogle Scholar
  8. Andrade RJ, Lucena MI, Fernandez MC, Pelaez G, Pachkoria K, Garcia-Ruiz E, Garcia-Munoz B, Gonzalez-Grande R, Pizarro A, Duran JA, Jimenez M, Rodrigo L, Romero-Gomez M, Navarro JM, Planas R, Costa J, Borras A, Soler A, Salmeron J, Martin-Vivaldi R (2005) Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology 129:512–521PubMedGoogle Scholar
  9. Anwer MS (2004) Cellular regulation of hepatic bile acid transport in health and cholestasis. Hepatology 39:581–590PubMedCrossRefGoogle Scholar
  10. Anwer MS, Kroker R, Hegner D (1976) Effect of albumin on bile acid uptake by isolated rat hepatocytes. Is there a common bile acid carrier? Biochem Biophys Res Commun 73:63–71PubMedCrossRefGoogle Scholar
  11. Arias IM (1993) Cyclosporin, the biology of the bile canaliculus, and cholestasis. Gastroenterology 104:1558–1560PubMedGoogle Scholar
  12. Arrese M, Trauner M, Ananthanarayanan M, Pizarro M, Solis N, Accatino L, Soroka C, Boyer JL, Karpen SJ, Miquel JF, Suchy FJ (2003) Down-regulation of the Na+/taurocholate cotransporting polypeptide during pregnancy in the rat. J Hepatol 38:148–155PubMedCrossRefGoogle Scholar
  13. Atherfold PA, Jankowski JA (2006) Molecular biology of Barrett’s cancer. Best Pract Res Clin Gastroenterol 20:813–827PubMedCrossRefGoogle Scholar
  14. Azer SA, Stacey NH (1993) Differential effects of cyclosporin A on the transport of bile acids by human hepatocytes. Biochem Pharmacol 46:813–819PubMedCrossRefGoogle Scholar
  15. Baringhaus KH, Matter H, Stengelin S, Kramer W (1999) Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. II. A reliable 3D QSAR pharmacophore model for the ileal Na(+)/bile acid cotransporter. J Lipid Res 40:2158–2168PubMedGoogle Scholar
  16. Beuers U (2006) Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol 3:318–328PubMedCrossRefGoogle Scholar
  17. Bleibel W, Kim S, D’Silva K, Lemmer ER (2007) Drug-induced liver injury: review article. Dig Dis Sci 52:2463–2471PubMedCrossRefGoogle Scholar
  18. Blitzer BL, Lyons L (1985) Enhancement of Na+-dependent bile acid uptake by albumin: direct demonstration in rat basolateral liver plasma membrane vesicles. Am J Physiol 249:G34–G38PubMedGoogle Scholar
  19. Blitzer BL, Ratoosh SL, Donovan CB, Boyer JL (1982) Effects of inhibitors of Na+-coupled ion transport on bile acid uptake by isolated rat hepatocytes. Am J Physiol 243:G48–G53PubMedGoogle Scholar
  20. Bode KA, Donner MG, Leier I, Keppler D (2002) Inhibition of transport across the hepatocyte canalicular membrane by the antibiotic fusidate. Biochem Pharmacol 64:151–158PubMedCrossRefGoogle Scholar
  21. Bohme M, Muller M, Leier I, Jedlitschky G, Keppler D (1994) Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver. Gastroenterology 107:255–265PubMedGoogle Scholar
  22. Bolder U, Schmidt A, Landmann L, Kidder V, Tange S, Jauch KW (2002) Heat stress prevents impairment of bile acid transport in endotoxemic rats by a posttranscriptional mechanism. Gastroenterology 122:963–973PubMedCrossRefGoogle Scholar
  23. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592PubMedCrossRefGoogle Scholar
  24. Bossard R, Stieger B, O'Neill B, Fricker G, Meier PJ (1993) Ethinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver. J Clin Invest 91:2714–2720PubMedCrossRefGoogle Scholar
  25. Bouchard G, Nelson HM, Lammert F, Rowe LB, Carey MC, Paigen B (1999) High-resolution maps of the murine Chromosome 2 region containing the cholesterol gallstone locus, Lith1. Mamm Genome 10:1070–1074PubMedCrossRefGoogle Scholar
  26. Boyer JL, Graf J, Meier PJ (1992) Hepatic transport systems regulating pHi, cell volume, and bile secretion. Annu Rev Physiol 54:415–438PubMedGoogle Scholar
  27. Boyer JL, Hagenbuch B, Ananthanarayanan M, Suchy F, Stieger B, Meier PJ (1993) Phylogenic and ontogenic expression of hepatocellular bile acid transport. Proc Natl Acad Sci USA 90:435–438PubMedCrossRefGoogle Scholar
  28. Boyer JL, Ng OC, Ananthanarayanan M, Hofmann AF, Schteingart CD, Hagenbuch B, Stieger B, Meier PJ (1994) Expression and characterization of a functional rat liver Na+ bile acid cotransport system in COS-7 cells. Am J Physiol 266:G382–G387PubMedGoogle Scholar
  29. Briz O, Serrano MA, Rebollo N, Hagenbuch B, Meier PJ, Koepsell H, Marin JJ (2002) Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol 61:853–860PubMedCrossRefGoogle Scholar
  30. Brown RS Jr, Lomri N, De VJ, Rahmaoui CM, Xie MH, Hua T, Lidofsky SD, Scharschmidt BF (1995) Enhanced secretion of glycocholic acid in a specially adapted cell line is associated with overexpression of apparently novel ATP-binding cassette proteins. Proc Natl Acad Sci USA 92:5421–5425PubMedCrossRefGoogle Scholar
  31. Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ (2002) The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 123:1649–1658PubMedCrossRefGoogle Scholar
  32. Byrne JA, Strautnieks SS, Ihrke G, Pagani F, Knisely AS, Linton KJ, Mieli-Vergani G, Thompson RJ (2009) Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing. Hepatology 49:553–567PubMedCrossRefGoogle Scholar
  33. Cai SY, Wang L, Ballatori N, Boyer JL (2001) Bile salt export pump is highly conserved during vertebrate evolution and its expression is inhibited by PFIC type II mutations. Am J Physiol Gastrointest Liver Physiol 281:G316–G322PubMedGoogle Scholar
  34. Cao J, Huang L, Liu Y, Hoffman T, Stieger B, Meier PJ, Vore M (2001) Differential regulation of hepatic bile salt and organic anion transporters in pregnant and postpartum rats and the role of prolactin. Hepatology 33:140–147PubMedCrossRefGoogle Scholar
  35. Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, Strauss KA, Shneider BL, Lim WA, Salen G, Morton DH, Bull LN (2003) Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet 34:91–96PubMedCrossRefGoogle Scholar
  36. Cattori V, Eckhardt U, Hagenbuch B (1999) Molecular cloning and functional characterization of two alternatively spliced Ntcp isoforms from mouse liver1. Biochim Biophys Acta 1445:154–159PubMedGoogle Scholar
  37. Chalasani N, Fontana RJ, Bonkovsky HL, Watkins PB, Davern T, Serrano J, Yang H, Rochon J (2008) Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology 135:1924–1934PubMedCrossRefGoogle Scholar
  38. Chan W, Calderon G, Swift AL, Moseley J, Li S, Hosoya H, Arias IM, Ortiz DF (2005) Myosin II regulatory light chain is required for trafficking of bile salt export protein to the apical membrane in Madin-Darby canine kidney cells. J Biol Chem 280:23741–23747PubMedCrossRefGoogle Scholar
  39. Chen HL, Chen HL, Liu YJ, Feng CH, Wu CY, Shyu MK, Yuan RH, Chang MH (2005) Developmental expression of canalicular transporter genes in human liver. J Hepatol 43:472–477PubMedCrossRefGoogle Scholar
  40. Chen Q, Kon J, Ooe H, Sasaki K, Mitaka T (2007) Selective proliferation of rat hepatocyte progenitor cells in serum-free culture. Nat Protoc 2:1197–1205PubMedCrossRefGoogle Scholar
  41. Chen HL, Liu YJ, Chen HL, Wu SH, Ni YH, Ho MC, Lai HS, Hsu WM, Hsu HY, Tseng HC, Jeng YM, Chang MH (2008a) Expression of hepatocyte transporters and nuclear receptors in children with early and late-stage biliary atresia. Pediatr Res 63:667–673PubMedCrossRefGoogle Scholar
  42. Chen HL, Liu YJ, Su YN, Wang NY, Wu SH, Ni YH, Hsu HY, Wu TC, Chang MH (2008b) Diagnosis of BSEP/ABCB11 mutations in Asian patients with cholestasis using denaturing high performance liquid chromatography. J Pediatr 153:825–832PubMedCrossRefGoogle Scholar
  43. Chen WM, Erdos MR, Jackson AU, Saxena R, Sanna S, Silver KD, Timpson NJ, Hansen T, Orru M, Grazia PM, Bonnycastle LL, Willer CJ, Lyssenko V, Shen H, Kuusisto J, Ebrahim S, Sestu N, Duren WL, Spada MC, Stringham HM, Scott LJ, Olla N, Swift AJ, Najjar S, Mitchell BD, Lawlor DA, Smith GD, Ben-Shlomo Y, Andersen G, Borch-Johnsen K, Jorgensen T, Saramies J, Valle TT, Buchanan TA, Shuldiner AR, Lakatta E, Bergman RN, Uda M, Tuomilehto J, Pedersen O, Cao A, Groop L, Mohlke KL, Laakso M, Schlessinger D, Collins FS, Altshuler D, Abecasis GR, Boehnke M, Scuteri A, Watanabe RM (2008c) Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest 118:2620–2628PubMedGoogle Scholar
  44. Cheng Q, Aleksunes LM, Manautou JE, Cherrington NJ, Scheffer GL, Yamasaki H, Slitt AL (2008) Drug-metabolizing enzyme and transporter expression in a mouse model of diabetes and obesity. Mol Pharm 5:77–91PubMedCrossRefGoogle Scholar
  45. Childs S, Yeh RL, Georges E, Ling V (1995) Identification of a sister gene to P-glycoprotein. Cancer Res 55:2029–2034PubMedGoogle Scholar
  46. Chinese Human Liver Proteome Profiling Consortium (2010) First insight into the human liver proteome from PROTEOME(SKY)-LIVER(Hu) 1.0, a publicly available database. J Proteome Res 9(1):79–94CrossRefGoogle Scholar
  47. Cohn MA, Rounds DJ, Karpen SJ, Ananthanarayanan M, Suchy FJ (1995) Assignment of a rat liver Na+/bile acid cotransporter gene to chromosome 6q24. Mamm Genome 6:60PubMedCrossRefGoogle Scholar
  48. Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, Dawson PA (1998) Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 274:G157–G169PubMedGoogle Scholar
  49. Crawford JM (1996) Role of vesicle-mediated transport pathways in hepatocellular bile secretion. Semin Liver Dis 16:169–189PubMedCrossRefGoogle Scholar
  50. Crawford JM, Berken CA, Gollan JL (1988) Role of the hepatocyte microtubular system in the excretion of bile salts and biliary lipid: implications for intracellular vesicular transport. J Lipid Res 29:144–156PubMedGoogle Scholar
  51. Crocenzi FA, Mottino AD, Cao J, Veggi LM, Pozzi EJ, Vore M, Coleman R, Roma MG (2003a) Estradiol-17beta-d-glucuronide induces endocytic internalization of Bsep in rats. Am J Physiol Gastrointest Liver Physiol 285:G449–G459PubMedGoogle Scholar
  52. Crocenzi FA, Mottino AD, Sanchez Pozzi EJ, Pellegrino JM, Rodriguez Garay EA, Milkiewicz P, Vore M, Coleman R, Roma MG (2003b) Impaired localisation and transport function of canalicular Bsep in taurolithocholate induced cholestasis in the rat. Gut 52:1170–1177PubMedCrossRefGoogle Scholar
  53. Crocenzi FA, Basiglio CL, Perez LM, Portesio MS, Pozzi EJ, Roma MG (2005) Silibinin prevents cholestasis-associated retrieval of the bile salt export pump, Bsep, in isolated rat hepatocyte couplets: possible involvement of cAMP. Biochem Pharmacol 69:1113–1120PubMedCrossRefGoogle Scholar
  54. Davis RA, Attie AD (2008) Deletion of the ileal basolateral bile acid transporter identifies the cellular sentinels that regulate the bile acid pool. Proc Natl Acad Sci U S A 105:4965–4966PubMedCrossRefGoogle Scholar
  55. Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E (2009) Progressive familial intrahepatic cholestasis. Orphanet J Rare Dis 4:1PubMedCrossRefGoogle Scholar
  56. Dawson PA, Lan T, Rao A (2009) Bile acid transporters. J Lipid Res 50(12):2340–2357PubMedCrossRefGoogle Scholar
  57. de Waart DR, Hausler S, Vlaming ML, Kunne C, Hanggi E, Gruss HJ, Oude Elferink RP, Stieger B (2010) Hepatic transport mechanisms of cholyl-L-lysyl-fluorescein. J Pharmacol Exp Ther 334:78–86PubMedCrossRefGoogle Scholar
  58. de Zwart L, Scholten M, Monbaliu JG, Annaert PP, Van Houdt JM, Van den Wyngaert I, De Schaepdrijver LM, Bailey GP, Coogan TP, Coussement WC, Mannens GS (2008) The ontogeny of drug metabolizing enzymes and transporters in the rat. Reprod Toxicol 26:220–230PubMedCrossRefGoogle Scholar
  59. Dietmaier A, Gasser R, Graf J, Peterlik M (1976) Investigations on the sodium dependence of bile acid fluxes in the isolated perfused rat liver. Biochim Biophys Acta 443:81–91PubMedCrossRefGoogle Scholar
  60. Dixon PH, van Mil SW, Chambers J, Strautnieks S, Thompson RJ, Lammert F, Kubitz R, Keitel V, Glantz A, Mattsson LA, Marschall HU, Molokhia M, Moore GE, Linton KJ, Williamson C (2009) Contribution of variant alleles of ABCB11 to susceptibility to intrahepatic cholestasis of pregnancy. Gut 58:537–544PubMedCrossRefGoogle Scholar
  61. Dombrowski F, Stieger B, Beuers U (2006) Tauroursodeoxycholic acid inserts the bile salt export pump into canalicular membranes of cholestatic rat liver. Lab Invest 86:166–174PubMedCrossRefGoogle Scholar
  62. Donner MG, Schumacher S, Warskulat U, Heinemann J, Haussinger D (2007) Obstructive cholestasis induces TNF-alpha- and IL-1 -mediated periportal downregulation of Bsep and zonal regulation of Ntcp, Oatp1a4, and Oatp1b2. Am J Physiol Gastrointest Liver Physiol 293:G1134–G1146PubMedCrossRefGoogle Scholar
  63. Dransfeld O, Gehrmann T, Kohrer K, Kircheis G, Holneicher C, Haussinger D, Wettstein M (2005) Oligonucleotide microarray analysis of differential transporter regulation in the regenerating rat liver. Liver Int 25:1243–1258PubMedCrossRefGoogle Scholar
  64. Duffy MC, Blitzer BL, Boyer JL (1983) Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. J Clin Invest 72:1470–1481PubMedCrossRefGoogle Scholar
  65. Dumont M, Jacquemin E, D’Hont C, Descout C, Cresteil D, Haouzi D, Desrochers M, Stieger B, Hadchouel M, Erlinger S (1997) Expression of the liver Na+-independent organic anion transporting polypeptide (oatp-1) in rats with bile duct ligation. J Hepatol 27:1051–1056PubMedCrossRefGoogle Scholar
  66. Elferink MG, Olinga P, Draaisma AL, Merema MT, Faber KN, Slooff MJ, Meijer DK, Groothuis GM (2004) LPS-induced downregulation of MRP2 and BSEP in human liver is due to a posttranscriptional process. Am J Physiol Gastrointest Liver Physiol 287:G1008–G1016PubMedCrossRefGoogle Scholar
  67. El-Seaidy AZ, Mills CO, Elias E, Crawford JM (1997) Lack of evidence for vesicle trafficking of fluorescent bile salts in rat hepatocyte couplets. Am J Physiol 272:G298–G309PubMedGoogle Scholar
  68. Erlinger S (1996) Do intracellular organelles have any role in transport of bile acids by hepatocytes? J Hepatol 24(Suppl 1):88–93PubMedGoogle Scholar
  69. Esteller A (2008) Physiology of bile secretion. World J Gastroenterol 14:5641–5649PubMedCrossRefGoogle Scholar
  70. Fattinger K, Cattori V, Hagenbuch B, Meier PJ, Stieger B (2000) Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2. Hepatology 32:82–86PubMedCrossRefGoogle Scholar
  71. Fattinger K, Funk C, Pantze M, Weber C, Reichen J, Stieger B, Meier PJ (2001) The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther 69:223–231PubMedCrossRefGoogle Scholar
  72. Favre N, Abergel A, Blanc P, Sapin V, Roszyk L, Gallot D (2009) Unusual presentation of severe intrahepatic cholestasis of pregnancy leading to fetal death. Obstet Gynecol 114:491–493PubMedCrossRefGoogle Scholar
  73. Feng B, Xu JJ, Bi YA, Mireles R, Davidson R, Duignan DB, Campbell S, Kostrubsky VE, Dunn MC, Smith AR, Wang HF (2009) Role of hepatic transporters in the disposition and hepatotoxicity of a HER2 tyrosine kinase inhibitor CP-724, 714. Toxicol Sci 108:492–500PubMedCrossRefGoogle Scholar
  74. Figge A, Lammert F, Paigen B, Henkel A, Matern S, Korstanje R, Shneider BL, Chen F, Stoltenberg E, Spatz K, Hoda F, Cohen DE, Green RM (2004) Hepatic overexpression of murine Abcb11 increases hepatobiliary lipid secretion and reduces hepatic steatosis. J Biol Chem 279:2790–2799PubMedCrossRefGoogle Scholar
  75. Fitz JG, Scharschmidt BF (1987) Intracellular chloride activity in intact rat liver: relationship to membrane potential and bile flow. Am J Physiol 252:G699–G706PubMedGoogle Scholar
  76. Follmann W, Petzinger E, Kinne RK (1990) Alterations of bile acid and bumetanide uptake during culturing of rat hepatocytes. Am J Physiol 258:C700–C712PubMedGoogle Scholar
  77. Fouassier L, Kinnman N, Lefevre G, Lasnier E, Rey C, Poupon R, Elferink RP, Housset C (2002) Contribution of mrp2 in alterations of canalicular bile formation by the endothelin antagonist bosentan. J Hepatol 37:184–191PubMedCrossRefGoogle Scholar
  78. Fouassier L, Beaussier M, Schiffer E, Rey C, Barbu V, Mergey M, Wendum D, Callard P, Scoazec JY, Lasnier E, Stieger B, Lienhart A, Housset C (2007) Hypoxia-induced changes in the expression of rat hepatobiliary transporter genes. Am J Physiol Gastrointest Liver Physiol 293:G25–G35PubMedCrossRefGoogle Scholar
  79. Friesema EC, Docter R, Moerings EP, Stieger B, Hagenbuch B, Meier PJ, Krenning EP, Hennemann G, Visser TJ (1999) Identification of thyroid hormone transporters. Biochem Biophys Res Commun 254:497–501PubMedCrossRefGoogle Scholar
  80. Fung KL, Gottesman MM (2009) A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function. Biochim Biophys Acta 1794:860–871PubMedGoogle Scholar
  81. Funk C (2008) The role of hepatic transporters in drug elimination. Expert Opin Drug Metab Toxicol 4:363–379PubMedCrossRefGoogle Scholar
  82. Funk C, Ponelle C, Scheuermann G, Pantze M (2001) Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: in vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol Pharmacol 59:627–635PubMedGoogle Scholar
  83. Ganguly TC, Liu Y, Hyde JF, Hagenbuch B, Meier PJ, Vore M (1994) Prolactin increases hepatic Na+/taurocholate co-transport activity and messenger RNA post partum. Biochem J 303:33–36PubMedGoogle Scholar
  84. Gao B, St Pierre MV, Stieger B, Meier PJ (2004) Differential expression of bile salt and organic anion transporters in developing rat liver. J Hepatol 41:201–208PubMedCrossRefGoogle Scholar
  85. Gartung C, Ananthanarayanan M, Rahman MA, Schuele S, Nundy S, Soroka CJ, Stolz A, Suchy FJ, Boyer JL (1996) Down-regulation of expression and function of the rat liver Na+/bile acid cotransporter in extrahepatic cholestasis. Gastroenterology 110:199–209PubMedCrossRefGoogle Scholar
  86. Gartung C, Schuele S, Schlosser SF, Boyer JL (1997) Expression of the rat liver Na+/taurocholate cotransporter is regulated in vivo by retention of biliary constituents but not their depletion. Hepatology 25:284–290PubMedGoogle Scholar
  87. Gatmaitan ZC, Nies AT, Arias IM (1997) Regulation and translocation of ATP-dependent apical membrane proteins in rat liver. Am J Physiol 272:G1041–G1049PubMedGoogle Scholar
  88. Geier A, Dietrich CG, Lammert F, Orth T, Mayet WJ, Matern S, Gartung C (2002a) Regulation of organic anion transporters in a new rat model of acute and chronic cholangitis resembling human primary sclerosing cholangitis. J Hepatol 36:718–724PubMedCrossRefGoogle Scholar
  89. Geier A, Kim SK, Gerloff T, Dietrich CG, Lammert F, Karpen SJ, Stieger B, Meier PJ, Matern S, Gartung C (2002b) Hepatobiliary organic anion transporters are differentially regulated in acute toxic liver injury induced by carbon tetrachloride. J Hepatol 37:198–205PubMedCrossRefGoogle Scholar
  90. Geier A, Dietrich CG, Voigt S, Kim SK, Gerloff T, Kullak-Ublick GA, Lorenzen J, Matern S, Gartung C (2003) Effects of proinflammatory cytokines on rat organic anion transporters during toxic liver injury and cholestasis. Hepatology 38:345–354PubMedCrossRefGoogle Scholar
  91. Geier A, Wagner M, Dietrich CG, Trauner M (2007) Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta 1773:283–308PubMedCrossRefGoogle Scholar
  92. Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J, Hofmann AF, Meier PJ (1998) The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 273:10046–10050PubMedCrossRefGoogle Scholar
  93. Gerloff T, Geier A, Stieger B, Hagenbuch B, Meier PJ, Matern S, Gartung C (1999) Differential expression of basolateral and canalicular organic anion transporters during regeneration of rat liver. Gastroenterology 117:1408–1415PubMedCrossRefGoogle Scholar
  94. Geuken E, Visser D, Kuipers F, Blokzijl H, Leuvenink HG, de Jong KP, Peeters PM, Jansen PL, Slooff MJ, Gouw AS, Porte RJ (2004) Rapid increase of bile salt secretion is associated with bile duct injury after human liver transplantation. J Hepatol 41:1017–1025PubMedCrossRefGoogle Scholar
  95. Geyer J, Wilke T, Petzinger E (2006) The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch Pharmacol 372:413–431PubMedCrossRefGoogle Scholar
  96. Green RM, Beier D, Gollan JL (1996) Regulation of hepatocyte bile salt transporters by endotoxin and inflammatory cytokines in rodents. Gastroenterology 111:193–198PubMedCrossRefGoogle Scholar
  97. Green RM, Gollan JL, Hagenbuch B, Meier PJ, Beier DR (1997) Regulation of hepatocyte bile salt transporters during hepatic regeneration. Am J Physiol 273:G621–G627PubMedGoogle Scholar
  98. Green RM, Ananthanarayanan M, Suchy FJ, Beier DR (1998) Genetic mapping of the Na(+)-taurocholate cotransporting polypeptide to mouse chromosome 12. Mamm Genome 9:598PubMedCrossRefGoogle Scholar
  99. Green RM, Hoda F, Ward KL (2000) Molecular cloning and characterization of the murine bile salt export pump. Gene 241:117–123PubMedCrossRefGoogle Scholar
  100. Gundala S, Wells LD, Milliano MT, Talkad V, Luxon BA, Neuschwander-Tetri BA (2004) The hepatocellular bile acid transporter Ntcp facilitates uptake of the lethal mushroom toxin alpha-amanitin. Arch Toxicol 78:68–73PubMedCrossRefGoogle Scholar
  101. Hagenbuch B (1997) Molecular properties of hepatic uptake systems for bile acids and organic anions. J Membr Biol 160:1–8PubMedCrossRefGoogle Scholar
  102. Hagenbuch B, Dawson P (2004) The sodium bile salt cotransport family SLC10. Pflugers Arch 447:566–570PubMedCrossRefGoogle Scholar
  103. Hagenbuch B, Meier PJ (1994) Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 93:1326–1331PubMedCrossRefGoogle Scholar
  104. Hagenbuch B, Meier PJ (1996) Sinusoidal (basolateral) bile salt uptake systems of hepatocytes. Semin Liver Dis 16:129–136PubMedCrossRefGoogle Scholar
  105. Hagenbuch B, Lubbert H, Stieger B, Meier PJ (1990) Expression of the hepatocyte Na+/bile acid cotransporter in Xenopus laevis oocytes. J Biol Chem 265:5357–5360PubMedGoogle Scholar
  106. Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ (1991) Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci USA 88:10629–10633PubMedCrossRefGoogle Scholar
  107. Hallen S, Mareninova O, Branden M, Sachs G (2002) Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Biochemistry 41:7253–7266PubMedCrossRefGoogle Scholar
  108. Hardikar W, Ananthanarayanan M, Suchy FJ (1995) Differential ontogenic regulation of basolateral and canalicular bile acid transport proteins in rat liver. J Biol Chem 270:20841–20846PubMedCrossRefGoogle Scholar
  109. Hartmann G, Cheung AK, Piquette-Miller M (2002) Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther 303:273–281PubMedCrossRefGoogle Scholar
  110. Hata S, Wang P, Eftychiou N, Ananthanarayanan M, Batta A, Salen G, Pang KS, Wolkoff AW (2003) Substrate specificities of rat oatp1 and ntcp: implications for hepatic organic anion uptake. Am J Physiol Gastrointest Liver Physiol 285:G829–G839PubMedGoogle Scholar
  111. Hayakawa T, Bruck R, Ng OC, Boyer JL (1990) DBcAMP stimulates vesicle transport and HRP excretion in isolated perfused rat liver. Am J Physiol 259:G727–G735PubMedGoogle Scholar
  112. Hayashi H, Sugiyama Y (2007) 4-phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps. Hepatology 45:1506–1516PubMedCrossRefGoogle Scholar
  113. Hayashi H, Sugiyama Y (2009) Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11). Mol Pharmacol 75:143–150PubMedCrossRefGoogle Scholar
  114. Hayashi H, Takada T, Suzuki H, Akita H, Sugiyama Y (2005a) Two common PFIC2 mutations are associated with the impaired membrane trafficking of BSEP/ABCB11. Hepatology 41:916–924PubMedCrossRefGoogle Scholar
  115. Hayashi H, Takada T, Suzuki H, Onuki R, Hofmann AF, Sugiyama Y (2005b) Transport by vesicles of glycine- and taurine-conjugated bile salts and taurolithocholate 3-sulfate: a comparison of human BSEP with rat Bsep. Biochim Biophys Acta 1738:54–62PubMedGoogle Scholar
  116. Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch 447:465–468PubMedCrossRefGoogle Scholar
  117. Heemskerk S, van Koppen A, van den Broek L, Poelen GJ, Wouterse AC, Dijkman HB, Russel FG, Masereeuw R (2007) Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia. Pflugers Arch 454:321–334PubMedCrossRefGoogle Scholar
  118. Henkel A, Wei Z, Cohen DE, Green RM (2005) Mice overexpressing hepatic Abcb11 rapidly develop cholesterol gallstones. Mamm Genome 16:903–908PubMedCrossRefGoogle Scholar
  119. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113PubMedCrossRefGoogle Scholar
  120. Higgins CF, Gottesman MM (1992) Is the multidrug transporter a flippase? Trends Biochem Sci 17:18–21PubMedCrossRefGoogle Scholar
  121. Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 35:1333–1340PubMedCrossRefGoogle Scholar
  122. Hirano M, Maeda K, Hayashi H, Kusuhara H, Sugiyama Y (2005) Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther 314:876–882PubMedCrossRefGoogle Scholar
  123. Hirano H, Kurata A, Onishi Y, Sakurai A, Saito H, Nakagawa H, Nagakura M, Tarui S, Kanamori Y, Kitajima M, Ishikawa T (2006) High-speed screening and QSAR analysis of human ATP-binding cassette transporter ABCB11 (bile salt export pump) to predict drug-induced intrahepatic cholestasis. Mol Pharm 3:252–265PubMedCrossRefGoogle Scholar
  124. Ho RH, Leake BF, Roberts RL, Lee W, Kim RB (2004) Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem 279:7213–7222PubMedCrossRefGoogle Scholar
  125. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB (2006) Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130:1793–1806PubMedCrossRefGoogle Scholar
  126. Hoekstra H, Porte RJ, Tian Y, Jochum W, Stieger B, Moritz W, Slooff MJ, Graf R, Clavien PA (2006) Bile salt toxicity aggravates cold ischemic injury of bile ducts after liver transplantation in Mdr2+/− mice. Hepatology 43:1022–1031PubMedCrossRefGoogle Scholar
  127. Hoekstra H, Tian Y, Jochum W, Stieger B, Graf R, Porte RJ, Clavien PA (2008) Dearterialization of the liver causes intrahepatic cholestasis due to reduced bile transporter expression. Transplantation 85:1159–1166PubMedCrossRefGoogle Scholar
  128. Hofmann AF (1999) Bile acids: the good, the bad, and the ugly. News Physiol Sci 14:24–29PubMedGoogle Scholar
  129. Hofmann AF (2009) Bile acids: trying to understand their chemistry and biology with the hope of helping patients. Hepatology 49:1403–1418PubMedCrossRefGoogle Scholar
  130. Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65:2461–2483PubMedCrossRefGoogle Scholar
  131. Hofmann AF, Mangelsdorf DJ, Kliewer SA (2009) Chronic diarrhea due to excessive bile acid synthesis and not defective ileal transport: a new syndrome of defective fibroblast growth factor 19 release. Clin Gastroenterol Hepatol 7:1151–1154PubMedCrossRefGoogle Scholar
  132. Honscha W, Platte HD, Oesch F, Friedberg T (1995) Relationship between the microsomal epoxide hydrolase and the hepatocellular transport of bile acids and xenobiotics. Biochem J 311:975–979PubMedGoogle Scholar
  133. Horikawa M, Kato Y, Tyson CA, Sugiyama Y (2003) Potential cholestatic activity of various therapeutic agents assessed by bile canalicular membrane vesicles isolated from rats and humans. Drug Metab Pharmacokinet 18:16–22PubMedCrossRefGoogle Scholar
  134. Houten SM, Watanabe M, Auwerx J (2006) Endocrine functions of bile acids. EMBO J 25:1419–1425PubMedCrossRefGoogle Scholar
  135. Hsu YC, Chen HL, Wu MZ, Liu YJ, Lee PH, Sheu JC, Chen CH (2009) Adult progressive intrahepatic cholestasis associated with genetic variations in ATP8B1 and ABCB11. Hepatol Res 39:625–631PubMedCrossRefGoogle Scholar
  136. Huang L, Smit JW, Meijer DK, Vore M (2000) Mrp2 is essential for estradiol-17beta(beta-d-glucuronide)-induced cholestasis in rats. Hepatology 32:66–72PubMedCrossRefGoogle Scholar
  137. Ikegawa S, Yamamoto T, Ito H, Ishiwata S, Sakai T, Mitamura K, Maeda M (2008) Immunoprecipitation and MALDI-MS identification of lithocholic acid-tagged proteins in liver of bile duct-ligated rats. J Lipid Res 49:2463–2473PubMedCrossRefGoogle Scholar
  138. Imai S, Kikuchi R, Kusuhara H, Yagi S, Shiota K, Sugiyama Y (2009) Analysis of DNA methylation and histone modification profiles of liver-specific transporters. Mol Pharmacol 75:568–576PubMedCrossRefGoogle Scholar
  139. Inoue M, Kinne R, Tran T, Arias IM (1982) Taurocholate transport by rat liver sinusoidal membrane vesicles: evidence of sodium cotransport. Hepatology 2:572–579PubMedCrossRefGoogle Scholar
  140. Ismair MG, Hausler S, Stuermer CA, Guyot C, Meier PJ, Roth J, Stieger B (2009) ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes. Hepatology 49:1673–1682PubMedCrossRefGoogle Scholar
  141. Jansen PL, Strautnieks SS, Jacquemin E, Hadchouel M, Sokal EM, Hooiveld GJ, Koning JH, De Jager-Krikken A, Kuipers F, Stellaard F, Bijleveld CM, Gouw A, Van GH, Thompson RJ, Muller M (1999) Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 117:1370–1379PubMedCrossRefGoogle Scholar
  142. Jara P, Hierro L, Martinez-Fernandez P, Alvarez-Doforno R, Yanez F, Diaz MC, Camarena C, De la Vega A, Frauca E, Munoz-Bartolo G, Lopez-Santamaria M, Larrauri J, Alvarez L (2009) Recurrence of bile salt export pump deficiency after liver transplantation. N Engl J Med 361:1359–1367PubMedCrossRefGoogle Scholar
  143. Kagawa T, Watanabe N, Mochizuki K, Numari A, Ikeno Y, Itoh J, Tanaka H, Arias IM, Mine T (2008) Phenotypic differences in PFIC2 and BRIC2 correlate with protein stability of mutant Bsep and impaired taurocholate secretion in MDCK II cells. Am J Physiol Gastrointest Liver Physiol 294:G58–G67PubMedCrossRefGoogle Scholar
  144. Kaplowitz N (2005) Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4:489–499PubMedCrossRefGoogle Scholar
  145. Kato T, Hayashi H, Sugiyama Y (2010) Short- and medium-chain fatty acids enhance the cell surface expression and transport capacity of the bile salt export pump (BSEP/ABCB11). Biochim Biophys Acta 1801:1005–1012PubMedGoogle Scholar
  146. Keitel V, Burdelski M, Warskulat U, Kuhlkamp T, Keppler D, Haussinger D, Kubitz R (2005) Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 41:1160–1172PubMedCrossRefGoogle Scholar
  147. Keitel V, Vogt C, Haussinger D, Kubitz R (2006) Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy. Gastroenterology 131:624–629PubMedCrossRefGoogle Scholar
  148. Keitel V, Kubitz R, Haussinger D (2008) Endocrine and paracrine role of bile acids. World J Gastroenterol 14:5620–5629PubMedCrossRefGoogle Scholar
  149. Keitel V, Burdelski M, Vojnisek Z, Schmitt L, Haussinger D, Kubitz R (2009) De novo bile salt transporter antibodies as a possible cause of recurrent graft failure after liver transplantation: a novel mechanism of cholestasis. Hepatology 50:510–517PubMedCrossRefGoogle Scholar
  150. Kemp DC, Zamek-Gliszczynski MJ, Brouwer KL (2005) Xenobiotics inhibit hepatic uptake and biliary excretion of taurocholate in rat hepatocytes. Toxicol Sci 83:207–214PubMedCrossRefGoogle Scholar
  151. Kim RB, Leake B, Cvetkovic M, Roden MM, Nadeau J, Walubo A, Wilkinson GR (1999) Modulation by drugs of human hepatic sodium-dependent bile acid transporter (sodium taurocholate cotransporting polypeptide) activity. J Pharmacol Exp Ther 291:1204–1209PubMedGoogle Scholar
  152. Kim JY, Kim KH, Lee JA, Namkung W, Sun AQ, Ananthanarayanan M, Suchy FJ, Shin DM, Muallem S, Lee MG (2002) Transporter-mediated bile acid uptake causes Ca2+-dependent cell death in rat pancreatic acinar cells. Gastroenterology 122:1941–1953PubMedCrossRefGoogle Scholar
  153. Kim SR, Saito Y, Itoda M, Maekawa K, Kawamoto M, Kamatani N, Ozawa S, Sawada J (2009) Genetic variations of the ABC transporter gene ABCB11 encoding the human bile salt export pump (BSEP) in a Japanese population. Drug Metab Pharmacokinet 24:277–281PubMedCrossRefGoogle Scholar
  154. Kipp H, Arias IM (2002) Trafficking of canalicular ABC transporters in hepatocytes. Annu Rev Physiol 64:595–608PubMedCrossRefGoogle Scholar
  155. Kipp H, Pichetshote N, Arias IM (2001) Transporters on demand: intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J Biol Chem 276:7218–7224PubMedCrossRefGoogle Scholar
  156. Kis E, Ioja E, Nagy T, Szente L, Heredi-Szabo K, Krajcsi P (2009a) Effect of membrane cholesterol on BSEP/Bsep activity: species specificity studies for substrates and inhibitors. Drug Metab Dispos 37:1878–1886PubMedCrossRefGoogle Scholar
  157. Kis E, Rajnai Z, Ioja E, Heredi SK, Nagy T, Mehn D, Krajcsi P (2009b) Mouse Bsep ATPase assay: a nonradioactive tool for assessment of the cholestatic potential of drugs. J Biomol Screen 14:10–15PubMedCrossRefGoogle Scholar
  158. Klein I, Sarkadi B, Varadi A (1999) An inventory of the human ABC proteins. Biochim Biophys Acta 1461:237–262PubMedCrossRefGoogle Scholar
  159. Knisely AS, Strautnieks SS, Meier Y, Stieger B, Byrne JA, Portmann BC, Bull LN, Pawlikowska L, Bilezikci B, Ozcay F, Laszlo A, Tiszlavicz L, Moore L, Raftos J, Arnell H, Fischler B, Nemeth A, Papadogiannakis N, Cielecka-Kuszyk J, Jankowska I, Pawlowska J, Melin-Aldana H, Emerick KM, Whitington PF, Mieli-Vergani G, Thompson RJ (2006) Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency. Hepatology 44:478–486PubMedCrossRefGoogle Scholar
  160. Kojima H, Nies AT, Konig J, Hagmann W, Spring H, Uemura M, Fukui H, Keppler D (2003) Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis. J Hepatol 39:693–702PubMedCrossRefGoogle Scholar
  161. Kong FM, Sui CY, Li YJ, Guo KJ, Guo RX (2006) Hepatobiliary membrane transporters involving in the formation of cholesterol calculus. Hepatobiliary Pancreat Dis Int 5:286–289PubMedGoogle Scholar
  162. Konieczko EM, Ralston AK, Crawford AR, Karpen SJ, Crawford JM (1998) Enhanced Na+-dependent bile salt uptake by WIF-B cells, a rat hepatoma hybrid cell line, following growth in the presence of a physiological bile salt. Hepatology 27:191–199PubMedCrossRefGoogle Scholar
  163. Koopen NR, Wolters H, Muller M, Schippers IJ, Havinga R, Roelofsen H, Vonk RJ, Stieger B, Meier PJ, Kuipers F (1997) Hepatic bile salt flux does not modulate level and activity of the sinusoidal Na+-taurocholate cotransporter (ntcp) in rats. J Hepatol 27:699–706PubMedCrossRefGoogle Scholar
  164. Kosters A, Karpen SJ (2008) Bile acid transporters in health and disease. Xenobiotica 38:1043–1071PubMedCrossRefGoogle Scholar
  165. Kostrubsky VE, Strom SC, Hanson J, Urda E, Rose K, Burliegh J, Zocharski P, Cai H, Sinclair JF, Sahi J (2003) Evaluation of hepatotoxic potential of drugs by inhibition of bile-acid transport in cultured primary human hepatocytes and intact rats. Toxicol Sci 76:220–228PubMedCrossRefGoogle Scholar
  166. Kostrubsky SE, Strom SC, Kalgutkar AS, Kulkarni S, Atherton J, Mireles R, Feng B, Kubik R, Hanson J, Urda E, Mutlib AE (2006) Inhibition of hepatobiliary transport as a predictive method for clinical hepatotoxicity of nefazodone. Toxicol Sci 90:451–459PubMedCrossRefGoogle Scholar
  167. Kouzuki H, Suzuki H, Ito K, Ohashi R, Sugiyama Y (1998) Contribution of sodium taurocholate co-transporting polypeptide to the uptake of its possible substrates into rat hepatocytes. J Pharmacol Exp Ther 286:1043–1050PubMedGoogle Scholar
  168. Krahenbuhl S, Talos C, Fischer S, Reichen J (1994) Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology 19:471–479PubMedGoogle Scholar
  169. Kramer W, Stengelin S, Baringhaus KH, Enhsen A, Heuer H, Becker W, Corsiero D, Girbig F, Noll R, Weyland C (1999) Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. I. Transport studies with membrane vesicles and cell lines expressing the cloned transporters. J Lipid Res 40:1604–1617PubMedGoogle Scholar
  170. Kubitz R, Saha N, Kuhlkamp T, Dutta S, vom Dahl S, Wettstein M, Haussinger D (2004a) Ca2+-dependent protein kinase C isoforms induce cholestasis in rat liver. J Biol Chem 279:10323–10330PubMedCrossRefGoogle Scholar
  171. Kubitz R, Sutfels G, Kuhlkamp T, Kolling R, Haussinger D (2004b) Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology 126:541–553PubMedCrossRefGoogle Scholar
  172. Kubitz R, Keitel V, Scheuring S, Kohrer K, Haussinger D (2006) Benign recurrent intrahepatic cholestasis associated with mutations of the bile salt export pump. J Clin Gastroenterol 40:171–175PubMedCrossRefGoogle Scholar
  173. Kuhlkamp T, Keitel V, Helmer A, Haussinger D, Kubitz R (2005) Degradation of the sodium taurocholate cotransporting polypeptide (NTCP) by the ubiquitin-proteasome system. Biol Chem 386:1065–1074PubMedCrossRefGoogle Scholar
  174. Kuhn WF, Gewirtz DA (1988) Stimulation of taurocholate and glycocholate efflux from the rat hepatocyte by arginine vasopressin. Am J Physiol 254:G732–G740PubMedGoogle Scholar
  175. Kullak-Ublick GA, Beuers U, Paumgartner G (1996) Molecular and functional characterization of bile acid transport in human hepatoblastoma HepG2 cells. Hepatology 23:1053–1060PubMedCrossRefGoogle Scholar
  176. Kullak-Ublick GA, Glasa J, Boker C, Oswald M, Grutzner U, Hagenbuch B, Stieger B, Meier PJ, Beuers U, Kramer W, Wess G, Paumgartner G (1997) Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology 113:1295–1305PubMedCrossRefGoogle Scholar
  177. Kullak-Ublick GA, Ismair MG, Kubitz R, Schmitt M, Haussinger D, Stieger B, Hagenbuch B, Meier PJ, Beuers U, Paumgartner G (2000a) Stable expression and functional characterization of a Na+-taurocholate cotransporting green fluorescent protein in human hepatoblastoma HepG2 cells. Cytotechnology 34:1–9PubMedCrossRefGoogle Scholar
  178. Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ (2000b) Hepatic transport of bile salts. Semin Liver Dis 20:273–292PubMedCrossRefGoogle Scholar
  179. Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126:322–342PubMedCrossRefGoogle Scholar
  180. Lam P, Wang R, Ling V (2005) Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice. Biochemistry 44:12598–12605PubMedCrossRefGoogle Scholar
  181. Lam CW, Cheung KM, Tsui MS, Yan MS, Lee CY, Tong SF (2006) A patient with novel ABCB11 gene mutations with phenotypic transition between BRIC2 and PFIC2. J Hepatol 44:240–242PubMedCrossRefGoogle Scholar
  182. Lam P, Pearson CL, Soroka CJ, Xu S, Mennone A, Boyer JL (2007) Levels of plasma membrane expression in progressive and benign mutations of the bile salt export pump (Bsep/Abcb11) correlate with severity of cholestatic diseases. Am J Physiol Cell Physiol 293:C1709–C1716PubMedCrossRefGoogle Scholar
  183. Lamri Y, Roda A, Dumont M, Feldmann G, Erlinger S (1988) Immunoperoxidase localization of bile salts in rat liver cells. Evidence for a role of the Golgi apparatus in bile salt transport. J Clin Invest 82:1173–1182PubMedCrossRefGoogle Scholar
  184. Lang T, Haberl M, Jung D, Drescher A, Schlagenhaufer R, Keil A, Mornhinweg E, Stieger B, Kullak-Ublick GA, Kerb R (2006) Genetic variability, haplotype structures, and ethnic diversity of hepatic transporters MDR3 (ABCB4) and bile salt export pump (ABCB11). Drug Metab Dispos 34:1582–1599PubMedCrossRefGoogle Scholar
  185. Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, Kullak-Ublick GA, Meier PJ, Pauli-Magnus C (2007) Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics 17:47–60PubMedCrossRefGoogle Scholar
  186. Langmann T, Mauerer R, Zahn A, Moehle C, Probst M, Stremmel W, Schmitz G (2003) Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues. Clin Chem 49:230–238PubMedCrossRefGoogle Scholar
  187. Le VM, Jigorel E, Glaise D, Gripon P, Guguen-Guillouzo C, Fardel O (2006) Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma HepaRG cell line. Eur J Pharm Sci 28:109–117CrossRefGoogle Scholar
  188. Le VM, Gripon P, Stieger B, Fardel O (2008) Down-regulation of organic anion transporter expression in human hepatocytes exposed to the proinflammatory cytokine interleukin 1beta. Drug Metab Dispos 36:217–222CrossRefGoogle Scholar
  189. Le VM, Lecureur V, Moreau A, Stieger B, Fardel O (2009) Differential regulation of drug transporter expression by hepatocyte growth factor in primary human hepatocytes. Drug Metab Dispos 37:2228–2235CrossRefGoogle Scholar
  190. Leazer TM, Klaassen CD (2003) The presence of xenobiotic transporters in rat placenta. Drug Metab Dispos 31:153–167PubMedCrossRefGoogle Scholar
  191. Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lan LB, Schuetz JD (2000) Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol 57:24–35PubMedGoogle Scholar
  192. Lee JM, Trauner M, Soroka CJ, Stieger B, Meier PJ, Boyer JL (2000) Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology 118:163–172PubMedCrossRefGoogle Scholar
  193. Leslie EM, Watkins PB, Kim RB, Brouwer KL (2007) Differential inhibition of rat and human Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) by bosentan: a mechanism for species differences in hepatotoxicity. J Pharmacol Exp Ther 321:1170–1178PubMedCrossRefGoogle Scholar
  194. Liang D, Hagenbuch B, Stieger B, Meier PJ (1993) Parallel decrease of Na(+)-taurocholate cotransport and its encoding mRNA in primary cultures of rat hepatocytes. Hepatology 18:1162–1166PubMedGoogle Scholar
  195. Lindberg MC (1992) Hepatobiliary complications of oral contraceptives. J Gen Intern Med 7:199–209PubMedCrossRefGoogle Scholar
  196. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M, Collins R (2008) SLCO1B1 variants and statin-induced myopathy – a genomewide study. N Engl J Med 359:789–799PubMedCrossRefGoogle Scholar
  197. Little JM, Richey JE, Van Thiel DH, Lester R (1979) Taurocholate pool size and distribution in the fetal rat. J Clin Invest 63:1042–1049PubMedCrossRefGoogle Scholar
  198. Liu Y, Suchy FJ, Silverman JA, Vore M (1997) Prolactin increases ATP-dependent taurocholate transport in canalicular plasma membrane from rat liver. Am J Physiol 272:G46–G53PubMedGoogle Scholar
  199. Locher KP (2009) Review. Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci 364:239–245PubMedCrossRefGoogle Scholar
  200. Lomri N, Fitz JG, Scharschmidt BF (1996) Hepatocellular transport: role of ATP-binding cassette proteins. Semin Liver Dis 16:201–210PubMedCrossRefGoogle Scholar
  201. Lucena MI, Andrade RJ, Kaplowitz N, Garcia-Cortes M, Fernandez MC, Romero-Gomez M, Bruguera M, Hallal H, Robles-Diaz M, Rodriguez-Gonzalez JF, Navarro JM, Salmeron J, Martinez-Odriozola P, Perez-Alvarez R, Borraz Y, Hidalgo R (2009) Phenotypic characterization of idiosyncratic drug-induced liver injury: the influence of age and sex. Hepatology 49:2001–2009PubMedCrossRefGoogle Scholar
  202. Ma K, Xiao R, Tseng HT, Shan L, Fu L, Moore DD (2009) Circadian dysregulation disrupts bile acid homeostasis. PLoS ONE 4:e6843PubMedCrossRefGoogle Scholar
  203. Macias RI, Marin JJ, Serrano MA (2009) Excretion of biliary compounds during intrauterine life. World J Gastroenterol 15:817–828PubMedCrossRefGoogle Scholar
  204. Maeda K, Kambara M, Tian Y, Hofmann AF, Sugiyama Y (2006) Uptake of ursodeoxycholate and its conjugates by human hepatocytes: role of Na(+)-taurocholate cotransporting polypeptide (NTCP), organic anion transporting polypeptide (OATP) 1B1 (OATP-C), and oatp1B3 (OATP8). Mol Pharm 3:70–77PubMedCrossRefGoogle Scholar
  205. Mano Y, Usui T, Kamimura H (2007) Effects of bosentan, an endothelin receptor antagonist, on bile salt export pump and multidrug resistance-associated protein 2. Biopharm Drug Dispos 28:13–18PubMedCrossRefGoogle Scholar
  206. Mareninova O, Shin JM, Vagin O, Turdikulova S, Hallen S, Sachs G (2005) Topography of the membrane domain of the liver Na+-dependent bile acid transporter. Biochemistry 44:13702–13712PubMedCrossRefGoogle Scholar
  207. Marin JJ, Macias RI, Briz O, Perez MJ, Blazquez AG, Arrese M, Serrano MA (2008) Molecular bases of the fetal liver-placenta-maternal liver excretory pathway for cholephilic compounds. Liver Int 28:435–454PubMedCrossRefGoogle Scholar
  208. Marin JJ, Briz O, Perez MJ, Romero MR, Monte MJ (2009) Hepatobiliary transporters in the pharmacology and toxicology of anticancer drugs. Front Biosci 14:4257–4280PubMedCrossRefGoogle Scholar
  209. Marion TL, Leslie EM, Brouwer KL (2007) Use of sandwich-cultured hepatocytes to evaluate impaired bile acid transport as a mechanism of drug-induced hepatotoxicity. Mol Pharm 4:911–918PubMedCrossRefGoogle Scholar
  210. Marks DL, LaRusso NF, McNiven MA (1995) Isolation of the microtubule-vesicle motor kinesin from rat liver: selective inhibition by cholestatic bile acids. Gastroenterology 108:824–833PubMedCrossRefGoogle Scholar
  211. Marschall HU, Wagner M, Zollner G, Fickert P, Diczfalusy U, Gumhold J, Silbert D, Fuchsbichler A, Benthin L, Grundstrom R, Gustafsson U, Sahlin S, Einarsson C, Trauner M (2005) Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology 129:476–485PubMedGoogle Scholar
  212. McRae MP, Lowe CM, Tian X, Bourdet DL, Ho RH, Leake BF, Kim RB, Brouwer KL, Kashuba AD (2006) Ritonavir, saquinavir, and efavirenz, but not nevirapine, inhibit bile acid transport in human and rat hepatocytes. J Pharmacol Exp Ther 318:1068–1075PubMedCrossRefGoogle Scholar
  213. Meier PJ, Stieger B (2002) Bile salt transporters. Annu Rev Physiol 64:635–661PubMedCrossRefGoogle Scholar
  214. Meier PJ, Eckhardt U, Schroeder A, Hagenbuch B, Stieger B (1997) Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology 26:1667–1677PubMedCrossRefGoogle Scholar
  215. Meier Y, Cavallaro M, Roos M, Pauli-Magnus C, Folkers G, Meier PJ, Fattinger K (2005) Incidence of drug-induced liver injury in medical inpatients. Eur J Clin Pharmacol 61:135–143PubMedCrossRefGoogle Scholar
  216. Meier Y, Pauli-Magnus C, Zanger UM, Klein K, Schaeffeler E, Nussler AK, Nussler N, Eichelbaum M, Meier PJ, Stieger B (2006) Interindividual variability of canalicular ATP-binding-cassette (ABC)-transporter expression in human liver. Hepatology 44:62–74PubMedCrossRefGoogle Scholar
  217. Meier Y, Zodan T, Lang C, Zimmermann R, Kullak-Ublick GA, Meier PJ, Stieger B, Pauli-Magnus C (2008) Increased susceptibility for intrahepatic cholestasis of pregnancy and contraceptive-induced cholestasis in carriers of the 1331T>C polymorphism in the bile salt export pump. World J Gastroenterol 14:38–45PubMedCrossRefGoogle Scholar
  218. Mendoza ME, Monte MJ, Serrano MA, Pastor-Anglada M, Stieger B, Meier PJ, Medarde M, Marin JJ (2003) Physiological characteristics of allo-cholic acid. J Lipid Res 44:84–92PubMedCrossRefGoogle Scholar
  219. Misra S, Ujhazy P, Varticovski L, Arias IM (1999) Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc Natl Acad Sci USA 96:5814–5819PubMedCrossRefGoogle Scholar
  220. Mita S, Suzuki H, Akita H, Stieger B, Meier PJ, Hofmann AF, Sugiyama Y (2005) Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump. Am J Physiol Gastrointest Liver Physiol 288:G159–G167PubMedCrossRefGoogle Scholar
  221. Mita S, Suzuki H, Akita H, Hayashi H, Onuki R, Hofmann AF, Sugiyama Y (2006a) Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab Dispos 34:1575–1581PubMedCrossRefGoogle Scholar
  222. Mita S, Suzuki H, Akita H, Hayashi H, Onuki R, Hofmann AF, Sugiyama Y (2006b) Vectorial transport of unconjugated and conjugated bile salts by monolayers of LLC-PK1 cells doubly transfected with human NTCP and BSEP or with rat Ntcp and Bsep. Am J Physiol Gastrointest Liver Physiol 290:G550–G556PubMedCrossRefGoogle Scholar
  223. Miyata M, Kudo G, Lee YH, Yang TJ, Gelboin HV, Fernandez-Salguero P, Kimura S, Gonzalez FJ (1999) Targeted disruption of the microsomal epoxide hydrolase gene. Microsomal epoxide hydrolase is required for the carcinogenic activity of 7, 12-dimethylbenz[a]anthracene. J Biol Chem 274:23963–23968PubMedCrossRefGoogle Scholar
  224. Mochizuki K, Kagawa T, Numari A, Harris MJ, Itoh J, Watanabe N, Mine T, Arias IM (2007) Two N-linked glycans are required to maintain the transport activity of the bile salt export pump (ABCB11) in MDCK II cells. Am J Physiol Gastrointest Liver Physiol 292:G818–G828PubMedCrossRefGoogle Scholar
  225. Molina H, Azocar L, Ananthanarayanan M, Arrese M, Miquel JF (2008) Localization of the sodium-taurocholate cotransporting polypeptide in membrane rafts and modulation of its activity by cholesterol in vitro. Biochim Biophys Acta 1778:1283–1291PubMedCrossRefGoogle Scholar
  226. Moseley RH, Johnson TR, Morrissette JM (1990) Inhibition of bile acid transport by cyclosporine A in rat liver plasma membrane vesicles. J Pharmacol Exp Ther 253:974–980PubMedGoogle Scholar
  227. Moseley RH, Wang W, Takeda H, Lown K, Shick L, Ananthanarayanan M, Suchy FJ (1996) Effect of endotoxin on bile acid transport in rat liver: a potential model for sepsis-associated cholestasis. Am J Physiol 271:G137–G146PubMedGoogle Scholar
  228. Muehlenberg K, Wiedmann K, Keppeler H, Sauerbruch T, Lammert F (2008) Recurrent intrahepatic cholestasis of pregnancy and chain-like choledocholithiasis in a female patient with stop codon in the ABDC4-gene of the hepatobiliary phospholipid transporter. Z Gastroenterol 46:48–53PubMedCrossRefGoogle Scholar
  229. Mukhopadhayay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS (1997) cAMP increases liver Na+-taurocholate cotransport by translocating transporter to plasma membranes. Am J Physiol 273:G842–G848PubMedGoogle Scholar
  230. Mukhopadhyay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS (1998a) Sodium taurocholate cotransporting polypeptide is a serine, threonine phosphoprotein and is dephosphorylated by cyclic adenosine monophosphate. Hepatology 28:1629–1636PubMedCrossRefGoogle Scholar
  231. Mukhopadhyay S, Webster CR, Anwer MS (1998b) Role of protein phosphatases in cyclic AMP-mediated stimulation of hepatic Na+/taurocholate cotransport. J Biol Chem 273:30039–30045PubMedCrossRefGoogle Scholar
  232. Muller M, Ishikawa T, Berger U, Klunemann C, Lucka L, Schreyer A, Kannicht C, Reutter W, Kurz G, Keppler D (1991) ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110-kDa glycoprotein binding ATP and bile salt. J Biol Chem 266:18920–18926PubMedGoogle Scholar
  233. Nakano A, Tietz PS, LaRusso NF (1990) Circadian rhythms of biliary protein and lipid excretion in rats. Am J Physiol 258:G653–G659PubMedGoogle Scholar
  234. Ng KH, Le GC, Amborade E, Stieger B, Deschatrette J (2000) Reversible induction of rat hepatoma cell polarity with bile acids. J Cell Sci 113(Pt 23):4241–4251PubMedGoogle Scholar
  235. Niinuma K, Kato Y, Suzuki H, Tyson CA, Weizer V, Dabbs JE, Froehlich R, Green CE, Sugiyama Y (1999) Primary active transport of organic anions on bile canalicular membrane in humans. Am J Physiol 276:G1153–G1164PubMedGoogle Scholar
  236. Nishida T, Gatmaitan Z, Che M, Arias IM (1991) Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport system. Proc Natl Acad Sci U S A 88:6590–6594PubMedCrossRefGoogle Scholar
  237. Noe J, Hagenbuch B, Meier PJ, St-Pierre MV (2001) Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology 33:1223–1231PubMedCrossRefGoogle Scholar
  238. Noe J, Stieger B, Meier PJ (2002) Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 123:1659–1666PubMedCrossRefGoogle Scholar
  239. Noe J, Kullak-Ublick GA, Jochum W, Stieger B, Kerb R, Haberl M, Mullhaupt B, Meier PJ, Pauli-Magnus C (2005) Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol 43:536–543PubMedCrossRefGoogle Scholar
  240. Novak DA, Ryckman FC, Suchy FJ (1989) Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver. Hepatology 10:447–453PubMedCrossRefGoogle Scholar
  241. Ortiz DF, Moseley J, Calderon G, Swift AL, Li S, Arias IM (2004) Identification of HAX-1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin-Darby canine kidney cells. J Biol Chem 279:32761–32770PubMedCrossRefGoogle Scholar
  242. Oshima H, Kon J, Ooe H, Hirata K, Mitaka T (2008) Functional expression of organic anion transporters in hepatic organoids reconstructed by rat small hepatocytes. J Cell Biochem 104:68–81PubMedCrossRefGoogle Scholar
  243. Oude Elferink RP, Paulusma CC, Groen AK (2006) Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology 130:908–925PubMedCrossRefGoogle Scholar
  244. Palmeira CM, Rolo AP (2004) Mitochondrially-mediated toxicity of bile acids. Toxicology 203:1–15PubMedCrossRefGoogle Scholar
  245. Patel P, Weerasekera N, Hitchins M, Boyd CA, Johnston DG, Williamson C (2003) Semi quantitative expression analysis of MDR3, FIC1, BSEP, OATP-A, OATP-C, OATP-D, OATP-E and NTCP gene transcripts in 1st and 3rd trimester human placenta. Placenta 24:39–44PubMedCrossRefGoogle Scholar
  246. Pauli-Magnus C, Meier PJ (2006) Hepatobiliary transporters and drug-induced cholestasis. Hepatology 44:778–787PubMedCrossRefGoogle Scholar
  247. Pauli-Magnus C, Kerb R, Fattinger K, Lang T, Anwald B, Kullak-Ublick GA, Beuers U, Meier PJ (2004a) BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 39:779–791PubMedCrossRefGoogle Scholar
  248. Pauli-Magnus C, Lang T, Meier Y, Zodan-Marin T, Jung D, Breymann C, Zimmermann R, Kenngott S, Beuers U, Reichel C, Kerb R, Penger A, Meier PJ, Kullak-Ublick GA (2004b) Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics 14:91–102PubMedCrossRefGoogle Scholar
  249. Pauli-Magnus C, Stieger B, Meier Y, Kullak-Ublick GA, Meier PJ (2005) Enterohepatic transport of bile salts and genetics of cholestasis. J Hepatol 43:342–357PubMedCrossRefGoogle Scholar
  250. Pauli-Magnus C, Meier PJ, Stieger B (2010) Genetic determinants of drug-induced cholestasis and intrahepatic cholestasis of pregnancy. Semin Liver Dis 30:147–159PubMedCrossRefGoogle Scholar
  251. Paulusma CC, de Waart DR, Kunne C, Mok KS, Elferink RP (2009) Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content. J Biol Chem 284:9947–9954PubMedCrossRefGoogle Scholar
  252. Pellicoro A, Faber KN (2007) Review article: the function and regulation of proteins involved in bile salt biosynthesis and transport. Aliment Pharmacol Ther 26(Suppl 2):149–160PubMedCrossRefGoogle Scholar
  253. Perwaiz S, Forrest D, Mignault D, Tuchweber B, Phillip MJ, Wang R, Ling V, Yousef IM (2003) Appearance of atypical 3 alpha, 6 beta, 7 beta, 12 alpha-tetrahydroxy-5 beta-cholan-24-oic acid in spgp knockout mice. J Lipid Res 44:494–502PubMedCrossRefGoogle Scholar
  254. Pizarro M, Balasubramaniyan N, Solis N, Solar A, Duarte I, Miquel JF, Suchy FJ, Trauner M, Accatino L, Ananthanarayanan M, Arrese M (2004) Bile secretory function in the obese Zucker rat: evidence of cholestasis and altered canalicular transport function. Gut 53:1837–1843PubMedCrossRefGoogle Scholar
  255. Plass JR, Mol O, Heegsma J, Geuken M, de Bruin J, Elling G, Muller M, Faber KN, Jansen PL (2004) A progressive familial intrahepatic cholestasis type 2 mutation causes an unstable, temperature-sensitive bile salt export pump. J Hepatol 40:24–30PubMedCrossRefGoogle Scholar
  256. Platte HD, Honscha W, Schuh K, Petzinger E (1996) Functional characterization of the hepatic sodium-dependent taurocholate transporter stably transfected into an immortalized liver-derived cell line and V79 fibroblasts. Eur J Cell Biol 70:54–60PubMedGoogle Scholar
  257. Rao A, Haywood J, Craddock AL, Belinsky MG, Kruh GD, Dawson PA (2008) The organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for intestinal bile acid transport and homeostasis. Proc Natl Acad Sci U S A 105:3891–3896PubMedCrossRefGoogle Scholar
  258. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227PubMedCrossRefGoogle Scholar
  259. Reichen J, Paumgartner G (1976) Uptake of bile acids by perfused rat liver. Am J Physiol 231:734–742PubMedGoogle Scholar
  260. Rippin SJ, Hagenbuch B, Meier PJ, Stieger B (2001) Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes. Hepatology 33:776–782PubMedCrossRefGoogle Scholar
  261. Roma MG, Crocenzi FA, Mottino AD (2008) Dynamic localization of hepatocellular transporters in health and disease. World J Gastroenterol 14:6786–6801PubMedCrossRefGoogle Scholar
  262. Ros JE, Libbrecht L, Geuken M, Jansen PL, Roskams TA (2003) High expression of MDR1, MRP1, and MRP3 in the hepatic progenitor cell compartment and hepatocytes in severe human liver disease. J Pathol 200:553–560PubMedCrossRefGoogle Scholar
  263. Russell DW (2009) Fifty years of advances in bile acid synthesis and metabolism. J Lipid Res 50(Suppl):S120–S125PubMedCrossRefGoogle Scholar
  264. Russmann S, Kaye JA, Jick SS, Jick H (2005) Risk of cholestatic liver disease associated with flucloxacillin and flucloxacillin prescribing habits in the UK: cohort study using data from the UK General Practice Research Database. Br J Clin Pharmacol 60:76–82PubMedCrossRefGoogle Scholar
  265. Sabordo L, Sallustio BC (1997) Effects of gemfibrozil and clofibric acid on the uptake of taurocholate by isolated rat hepatocytes. Biochem Pharmacol 54:215–218PubMedCrossRefGoogle Scholar
  266. Saeki T, Kuroda T, Matsumoto M, Kanamoto R, Iwami K (2002) Effects of Cys mutation on taurocholic acid transport by mouse ileal and hepatic sodium-dependent bile acid transporters. Biosci Biotechnol Biochem 66:467–470PubMedCrossRefGoogle Scholar
  267. Saito S, Iida A, Sekine A, Miura Y, Ogawa C, Kawauchi S, Higuchi S, Nakamura Y (2002a) Three hundred twenty-six genetic variations in genes encoding nine members of ATP-binding cassette, subfamily B (ABCB/MDR/TAP), in the Japanese population. J Hum Genet 47:38–50PubMedCrossRefGoogle Scholar
  268. Saito S, Iida A, Sekine A, Ogawa C, Kawauchi S, Higuchi S, Nakamura Y (2002b) Catalog of 238 variations among six human genes encoding solute carriers (hSLCs) in the Japanese population. J Hum Genet 47:576–584PubMedCrossRefGoogle Scholar
  269. Sandker GW, Slooff MJ, Groothuis GM (1992) Drug transport, viability and morphology of isolated rat hepatocytes preserved for 24 hours in University of Wisconsin solution. Biochem Pharmacol 43:1479–1485PubMedCrossRefGoogle Scholar
  270. Sandker GW, Weert B, Olinga P, Wolters H, Slooff MJ, Meijer DK, Groothuis GM (1994) Characterization of transport in isolated human hepatocytes. A study with the bile acid taurocholic acid, the uncharged ouabain and the organic cations vecuronium and rocuronium. Biochem Pharmacol 47:2193–2200PubMedCrossRefGoogle Scholar
  271. Schonhoff CM, Thankey K, Webster CR, Wakabayashi Y, Wolkoff AW, Anwer MS (2008) Rab4 facilitates cyclic adenosine monophosphate-stimulated bile acid uptake and Na+-taurocholate cotransporting polypeptide translocation. Hepatology 48:1665–1670PubMedCrossRefGoogle Scholar
  272. Schroeder A, Eckhardt U, Stieger B, Tynes R, Schteingart CD, Hofmann AF, Meier PJ, Hagenbuch B (1998) Substrate specificity of the rat liver Na(+)-bile salt cotransporter in Xenopus laevis oocytes and in CHO cells. Am J Physiol 274:G370–G375PubMedGoogle Scholar
  273. Schuster D, Laggner C, Langer T (2005) Why drugs fail – a study on side effects in new chemical entities. Curr Pharm Des 11:3545–3559PubMedCrossRefGoogle Scholar
  274. Schwarz LR, Burr R, Schwenk M, Pfaff E, Greim H (1975) Uptake of taurocholic acid into isolated rat-liver cells. Eur J Biochem 55:617–623PubMedCrossRefGoogle Scholar
  275. Seeger MA, van Veen HW (2009) Molecular basis of multidrug transport by ABC transporters. Biochim Biophys Acta 1794:725–737PubMedGoogle Scholar
  276. Shitara Y, Li AP, Kato Y, Lu C, Ito K, Itoh T, Sugiyama Y (2003) Function of uptake transporters for taurocholate and estradiol 17beta-d-glucuronide in cryopreserved human hepatocytes. Drug Metab Pharmacokinet 18:33–41PubMedCrossRefGoogle Scholar
  277. Shneider BL, Fox VL, Schwarz KB, Watson CL, Ananthanarayanan M, Thevananther S, Christie DM, Hardikar W, Setchell KD, Mieli-Vergani G, Suchy FJ, Mowat AP (1997) Hepatic basolateral sodium-dependent-bile acid transporter expression in two unusual cases of hypercholanemia and in extrahepatic biliary atresia. Hepatology 25:1176–1183PubMedCrossRefGoogle Scholar
  278. Shoda J, Kano M, Oda K, Kamiya J, Nimura Y, Suzuki H, Sugiyama Y, Miyazaki H, Todoroki T, Stengelin S, Kramer W, Matsuzaki Y, Tanaka N (2001) The expression levels of plasma membrane transporters in the cholestatic liver of patients undergoing biliary drainage and their association with the impairment of biliary secretory function. Am J Gastroenterol 96:3368–3378PubMedCrossRefGoogle Scholar
  279. Sidler Pfandler MA, Hochli M, Inderbitzin D, Meier PJ, Stieger B (2004) Small hepatocytes in culture develop polarized transporter expression and differentiation. J Cell Sci 117:4077–4087PubMedCrossRefGoogle Scholar
  280. Simion FA, Fleischer B, Fleischer S (1984) Subcellular distribution of bile acids, bile salts, and taurocholate binding sites in rat liver. Biochemistry 23:6459–6466PubMedCrossRefGoogle Scholar
  281. Simon FR, Fortune J, Iwahashi M, Gartung C, Wolkoff A, Sutherland E (1996) Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters. Am J Physiol 271:G1043–G1052PubMedGoogle Scholar
  282. Slitt AL, Allen K, Morrone J, Aleksunes LM, Chen C, Maher JM, Manautou JE, Cherrington NJ, Klaassen CD (2007) Regulation of transporter expression in mouse liver, kidney, and intestine during extrahepatic cholestasis. Biochim Biophys Acta 1768:637–647PubMedCrossRefGoogle Scholar
  283. Small DM (2003) Role of ABC transporters in secretion of cholesterol from liver into bile. Proc Natl Acad Sci U S A 100:4–6PubMedCrossRefGoogle Scholar
  284. Smith DA, Schmid EF (2006) Drug withdrawals and the lessons within. Curr Opin Drug Discov Devel 9:38–46PubMedGoogle Scholar
  285. Snow KL, Moseley RH (2007) Effect of thiazolidinediones on bile acid transport in rat liver. Life Sci 80:732–740PubMedCrossRefGoogle Scholar
  286. Sokol RJ, Devereaux M, Dahl R, Gumpricht E (2006) “Let there be bile” – understanding hepatic injury in cholestasis. J Pediatr Gastroenterol Nutr 43(Suppl 1):S4–S9PubMedGoogle Scholar
  287. Souza RF, Krishnan K, Spechler SJ (2008) Acid, bile, and CDX: the ABCs of making Barrett’s metaplasia. Am J Physiol Gastrointest Liver Physiol 295:G211–G218PubMedCrossRefGoogle Scholar
  288. Stacey NH, Kotecka B (1988) Inhibition of taurocholate and ouabain transport in isolated rat hepatocytes by cyclosporin A. Gastroenterology 95:780–786PubMedGoogle Scholar
  289. Stieger B (2009) Recent insights into the function and regulation of the bile salt export pump (ABCB11). Curr Opin Lipidol 20:176–181PubMedCrossRefGoogle Scholar
  290. Stieger B (2010) Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev 42:437–445PubMedCrossRefGoogle Scholar
  291. Stieger B, Meier PJ (2001) Adenosine triphosphate dependent bile salt transport. In: Matern S, Boyer JL, Keppler D, Meier-Abt PJ (eds) Hepatobiliary transport: from bench to bedside. Kluwer Academic, Dordrecht, pp 54–59Google Scholar
  292. Stieger B, O'Neill B, Meier PJ (1992) ATP-dependent bile-salt transport in canalicular rat liver plasma-membrane vesicles. Biochem J 284(Pt 1):67–74PubMedGoogle Scholar
  293. Stieger B, Hagenbuch B, Landmann L, Hochli M, Schroeder A, Meier PJ (1994) In situ localization of the hepatocytic Na+/Taurocholate cotransporting polypeptide in rat liver. Gastroenterology 107:1781–1787PubMedGoogle Scholar
  294. Stieger B, Zhang J, O'Neill B, Sjovall J, Meier PJ (1997) Differential interaction of bile acids from patients with inborn errors of bile acid synthesis with hepatocellular bile acid transporters. Eur J Biochem 244:39–44PubMedCrossRefGoogle Scholar
  295. Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ (2000) Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 118:422–430PubMedCrossRefGoogle Scholar
  296. Stieger B, Meier Y, Meier PJ (2007) The bile salt export pump. Pflugers Arch 453:611–620PubMedCrossRefGoogle Scholar
  297. Stolz A, Takikawa H, Ookhtens M, Kaplowitz N (1989) The role of cytoplasmic proteins in hepatic bile acid transport. Annu Rev Physiol 51:161–176PubMedCrossRefGoogle Scholar
  298. St-Pierre MV, Stallmach T, Freimoser GA, Dufour JF, Serrano MA, Marin JJ, Sugiyama Y, Meier PJ (2004) Temporal expression profiles of organic anion transport proteins in placenta and fetal liver of the rat. Am J Physiol Regul Integr Comp Physiol 287:R1505–R1516PubMedGoogle Scholar
  299. Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Nemeth A, Pawlowska J, Baker A, Mieli-Vergani G, Freimer NB, Gardiner RM, Thompson RJ (1998) A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 20:233–238PubMedCrossRefGoogle Scholar
  300. Strautnieks SS, Byrne JA, Pawlikowska L, Cebecauerova D, Rayner A, Dutton L, Meier Y, Antoniou A, Stieger B, Arnell H, Ozcay F, Al-Hussaini HF, Bassas AF, Verkade HJ, Fischler B, Nemeth A, Kotalova R, Shneider BL, Cielecka-Kuszyk J, McClean P, Whitington PF, Sokal E, Jirsa M, Wali SH, Jankowska I, Pawlowska J, Mieli-Vergani G, Knisely AS, Bull LN, Thompson RJ (2008) Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology 134:1203–1214PubMedCrossRefGoogle Scholar
  301. Suchy FJ, Balistreri WF, Heubi JE, Searcy JE, Levin RS (1981) Physiologic cholestasis: elevation of the primary serum bile acid concentrations in normal infants. Gastroenterology 80:1037–1041PubMedGoogle Scholar
  302. Suchy FJ, Balistreri WF, Hung J, Miller P, Garfield SA (1983) Intracellular bile acid transport in rat liver as visualized by electron microscope autoradiography using a bile acid analogue. Am J Physiol 245:G681–G689PubMedGoogle Scholar
  303. Suchy FJ, Bucuvalas JC, Goodrich AL, Moyer MS, Blitzer BL (1986) Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles. Am J Physiol 251:G665–G673PubMedGoogle Scholar
  304. Suchy FJ, Bucuvalas JC, Novak DA (1987) Determinants of bile formation during development: ontogeny of hepatic bile acid metabolism and transport. Semin Liver Dis 7:77–84PubMedCrossRefGoogle Scholar
  305. Sun AQ, Arrese MA, Zeng L, Swaby I, Zhou MM, Suchy FJ (2001a) The rat liver Na(+)/bile acid cotransporter. Importance of the cytoplasmic tail to function and plasma membrane targeting. J Biol Chem 276:6825–6833PubMedCrossRefGoogle Scholar
  306. Sun AQ, Swaby I, Xu S, Suchy FJ (2001b) Cell-specific basolateral membrane sorting of the human liver Na(+)-dependent bile acid cotransporter. Am J Physiol Gastrointest Liver Physiol 280:G1305–G1313PubMedGoogle Scholar
  307. Sundaram SS, Bove KE, Lovell MA, Sokol RJ (2008) Mechanisms of disease: inborn errors of bile acid synthesis. Nat Clin Pract Gastroenterol Hepatol 5:456–468PubMedCrossRefGoogle Scholar
  308. Suzuki H, Sugiyama Y (2000) Transport of drugs across the hepatic sinusoidal membrane: sinusoidal drug influx and efflux in the liver. Semin Liver Dis 20:251–263PubMedCrossRefGoogle Scholar
  309. Takada T, Weiss HM, Kretz O, Gross G, Sugiyama Y (2004) Hepatic transport of PKI166, an epidermal growth factor receptor kinase inhibitor of the pyrrolo-pyrimidine class, and its main metabolite, ACU154. Drug Metab Dispos 32:1272–1278PubMedCrossRefGoogle Scholar
  310. Takahashi A, Hasegawa M, Sumazaki R, Suzuki M, Toki F, Suehiro T, Onigata K, Tomomasa T, Suzuki T, Matsui A, Morikawa A, Kuwano H (2007) Gradual improvement of liver function after administration of ursodeoxycholic acid in an infant with a novel ABCB11 gene mutation with phenotypic continuum between BRIC2 and PFIC2. Eur J Gastroenterol Hepatol 19:942–946PubMedCrossRefGoogle Scholar
  311. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K (2008) Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 7:678–693PubMedCrossRefGoogle Scholar
  312. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10:167–177PubMedCrossRefGoogle Scholar
  313. Thompson R, Strautnieks S (2000) Inherited disorders of transport in the liver. Curr Opin Genet Dev 10:310–313PubMedCrossRefGoogle Scholar
  314. Tomer G, Ananthanarayanan M, Weymann A, Balasubramanian N, Suchy FJ (2003) Differential developmental regulation of rat liver canalicular membrane transporters Bsep and Mrp2. Pediatr Res 53:288–294PubMedGoogle Scholar
  315. Torchia EC, Shapiro RJ, Agellon LB (1996) Reconstitution of bile acid transport in the rat hepatoma McArdle RH-7777 cell line. Hepatology 24:206–211PubMedCrossRefGoogle Scholar
  316. Torok M, Gutmann H, Fricker G, Drewe J (1999) Sister of P-glycoprotein expression in different tissues. Biochem Pharmacol 57:833–835PubMedCrossRefGoogle Scholar
  317. Trauner M, Boyer JL (2003) Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 83:633–671PubMedGoogle Scholar
  318. Trauner M, Meier PJ, Boyer JL (1999) Molecular regulation of hepatocellular transport systems in cholestasis. J Hepatol 31:165–178PubMedCrossRefGoogle Scholar
  319. Treepongkaruna S, Gaensan A, Pienvichit P, Luksan O, Knisely AS, Sornmayura P, Jirsa M (2009) Novel ABCB11 mutations in a Thai infant with progressive familial intrahepatic cholestasis. World J Gastroenterol 15:4339–4342PubMedCrossRefGoogle Scholar
  320. Treiber A, Schneiter R, Hausler S, Stieger B (2007) Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab Dispos 35:1400–1407PubMedCrossRefGoogle Scholar
  321. Vallejo M, Briz O, Serrano MA, Monte MJ, Marin JJ (2006) Potential role of trans-inhibition of the bile salt export pump by progesterone metabolites in the etiopathogenesis of intrahepatic cholestasis of pregnancy. J Hepatol 44:1150–1157PubMedCrossRefGoogle Scholar
  322. Vallejo M, Castro MA, Medarde M, Macias RI, Romero MR, El-Mir MY, Monte MJ, Briz O, Serrano MA, Marin JJ (2007) Novel bile acid derivatives (BANBs) with cytostatic activity obtained by conjugation of their side chain with nitrogenated bases. Biochem Pharmacol 73:1394–1404PubMedCrossRefGoogle Scholar
  323. Van der Borght S, Libbrecht L, Katoonizadeh A, Aerts R, Nevens F, Verslype C, Roskams TA (2007) Nuclear beta-catenin staining and absence of steatosis are indicators of hepatocellular adenomas with an increased risk of malignancy. Histopathology 51:855–856PubMedCrossRefGoogle Scholar
  324. Van Dyke RW, Stephens JE, Scharschmidt BF (1982) Bile acid transport in cultured rat hepatocytes. Am J Physiol 243:G484–G492PubMedGoogle Scholar
  325. van Mil SW, van der Woerd WL, van der Brugge G, Sturm E, Jansen PL, Bull LN, van den Berg IE, Berger R, Houwen RH, Klomp LW (2004) Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 127:379–384PubMedCrossRefGoogle Scholar
  326. Visser WE, Wong WS, van Mullem AA, Friesema EC, Geyer J, Visser TJ (2009) Study of the transport of thyroid hormone by transporters of the SLC10 family. Mol Cell Endocrinol 315:138–145PubMedGoogle Scholar
  327. von Dippe P, Amoui M, Alves C, Levy D (1993) Na(+)-dependent bile acid transport by hepatocytes is mediated by a protein similar to microsomal epoxide hydrolase. Am J Physiol 264:G528–G534Google Scholar
  328. Vore M (1987) Estrogen cholestasis. Membranes, metabolites, or receptors? Gastroenterology 93:643–649PubMedGoogle Scholar
  329. Vos TA, Hooiveld GJ, Koning H, Childs S, Meijer DK, Moshage H, Jansen PL, Muller M (1998) Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver. Hepatology 28:1637–1644PubMedCrossRefGoogle Scholar
  330. Vos TA, Ros JE, Havinga R, Moshage H, Kuipers F, Jansen PL, Muller M (1999) Regulation of hepatic transport systems involved in bile secretion during liver regeneration in rats. Hepatology 29:1833–1839PubMedCrossRefGoogle Scholar
  331. Wagner M, Zollner G, Trauner M (2009) New molecular insights into the mechanisms of cholestasis. J Hepatol 51:565–580PubMedCrossRefGoogle Scholar
  332. Wakabayashi Y, Lippincott-Schwartz J, Arias IM (2004) Intracellular trafficking of bile salt export pump (ABCB11) in polarized hepatic cells: constitutive cycling between the canalicular membrane and rab11-positive endosomes. Mol Biol Cell 15:3485–3496PubMedCrossRefGoogle Scholar
  333. Wakabayashi Y, Kipp H, Arias IM (2006) Transporters on demand: intracellular reservoirs and cycling of bile canalicular ABC transporters. J Biol Chem 281:27669–27673PubMedCrossRefGoogle Scholar
  334. Walters JR, Tasleem AM, Omer OS, Brydon WG, Dew T, le Roux CW (2009) A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis. Clin Gastroenterol Hepatol 7:1189–1194Google Scholar
  335. Wang R, Salem M, Yousef IM, Tuchweber B, Lam P, Childs SJ, Helgason CD, Ackerley C, Phillips MJ, Ling V (2001) Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci USA 98:2011–2016PubMedCrossRefGoogle Scholar
  336. Wang L, Soroka CJ, Boyer JL (2002) The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. J Clin Invest 110:965–972PubMedGoogle Scholar
  337. Wang R, Lam P, Liu L, Forrest D, Yousef IM, Mignault D, Phillips MJ, Ling V (2003) Severe cholestasis induced by cholic acid feeding in knockout mice of sister of P-glycoprotein. Hepatology 38:1489–1499PubMedGoogle Scholar
  338. Wang L, Dong H, Soroka CJ, Wei N, Boyer JL, Hochstrasser M (2008a) Degradation of the bile salt export pump at endoplasmic reticulum in progressive familial intrahepatic cholestasis type II. Hepatology 48:1558–1569PubMedCrossRefGoogle Scholar
  339. Wang YD, Chen WD, Moore DD, Huang W (2008b) FXR: a metabolic regulator and cell protector. Cell Res 18:1087–1095PubMedCrossRefGoogle Scholar
  340. Wang R, Chen HL, Liu L, Sheps JA, Phillips MJ, Ling V (2009) Compensatory role of P-glycoproteins in knockout mice lacking the bile salt export pump. Hepatology 50:948–956PubMedCrossRefGoogle Scholar
  341. Wasmuth HE, Glantz A, Keppeler H, Simon E, Bartz C, Rath W, Mattsson LA, Marschall HU, Lammert F (2007) Intrahepatic cholestasis of pregnancy: the severe form is associated with common variants of the hepatobiliary phospholipid transporter ABCB4 gene. Gut 56:265–270PubMedCrossRefGoogle Scholar
  342. Weinman SA (1997) Electrogenicity of Na(+)-coupled bile acid transporters. Yale J Biol Med 70:331–340PubMedGoogle Scholar
  343. Weinman SA, Maglova LM (1994) Free concentrations of intracellular fluorescent anions determined by cytoplasmic dialysis of isolated hepatocytes. Am J Physiol 267:G922–G931PubMedGoogle Scholar
  344. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14, 000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678CrossRefGoogle Scholar
  345. Wolters H, Kuipers F, Slooff MJ, Vonk RJ (1992) Adenosine triphosphate-dependent taurocholate transport in human liver plasma membranes. J Clin Invest 90:2321–2326PubMedCrossRefGoogle Scholar
  346. Wolters H, Elzinga BM, Baller JF, Boverhof R, Schwarz M, Stieger B, Verkade HJ, Kuipers F (2002) Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice. J Hepatol 37:556–563PubMedCrossRefGoogle Scholar
  347. Yabuuchi H, Tanaka K, Maeda M, Takemura M, Oka M, Ohashi R, Tamai I (2008) Cloning of the dog bile salt export pump (BSEP; ABCB11) and functional comparison with the human and rat proteins. Biopharm Drug Dispos 29:441–448PubMedCrossRefGoogle Scholar
  348. Yamaguchi K, Murai T, Yabuuchi H, Kurosawa T (2009) Measurement of the transport activities of bile salt export pump using LC-MS. Anal Sci 25:1155–1158PubMedCrossRefGoogle Scholar
  349. Zahner D, Eckhardt U, Petzinger E (2003) Transport of taurocholate by mutants of negatively charged amino acids, cysteines, and threonines of the rat liver sodium-dependent taurocholate cotransporting polypeptide Ntcp. Eur J Biochem 270:1117–1127PubMedCrossRefGoogle Scholar
  350. Zaja R, Munic V, Klobucar RS, Ambriovic-Ristov A, Smital T (2008) Cloning and molecular characterization of apical efflux transporters (ABCB1, ABCB11 and ABCC2) in rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 90:322–332PubMedCrossRefGoogle Scholar
  351. Zhou SF (2008) Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38:802–832PubMedCrossRefGoogle Scholar
  352. Zhu QS, Xing W, Qian B, von Dippe P, Shneider BL, Fox VL, Levy D (2003) Inhibition of human m-epoxide hydrolase gene expression in a case of hypercholanemia. Biochim Biophys Acta 1638:208–216PubMedGoogle Scholar
  353. Zimmerli B, Valantinas J, Meier PJ (1989) Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles. J Pharmacol Exp Ther 250:301–308PubMedGoogle Scholar
  354. Zinchuk VS, Okada T, Akimaru K, Seguchi H (2002) Asynchronous expression and colocalization of Bsep and Mrp2 during development of rat liver. Am J Physiol Gastrointest Liver Physiol 282:G540–G548PubMedGoogle Scholar
  355. Zinchuk V, Zinchuk O, Okada T (2005) Experimental LPS-induced cholestasis alters subcellular distribution and affects colocalization of Mrp2 and Bsep proteins: a quantitative colocalization study. Microsc Res Tech 67:65–70PubMedCrossRefGoogle Scholar
  356. Zinchuk V, Zinchuk O, Akimaru K, Moriya F, Okada T (2007) Ethanol consumption alters expression and colocalization of bile salt export pump and multidrug resistance protein 2 in the rat. Histochem Cell Biol 127:503–512PubMedCrossRefGoogle Scholar
  357. Zollner G, Fickert P, Zenz R, Fuchsbichler A, Stumptner C, Kenner L, Ferenci P, Stauber RE, Krejs GJ, Denk H, Zatloukal K, Trauner M (2001) Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33:633–646PubMedCrossRefGoogle Scholar
  358. Zollner G, Fickert P, Silbert D, Fuchsbichler A, Marschall HU, Zatloukal K, Denk H, Trauner M (2003) Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol 38:717–727PubMedCrossRefGoogle Scholar
  359. Zollner G, Wagner M, Fickert P, Silbert D, Fuchsbichler A, Zatloukal K, Denk H, Trauner M (2005) Hepatobiliary transporter expression in human hepatocellular carcinoma. Liver Int 25:367–379PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Division of Clinical Pharmacology and ToxicologyUniversity HospitalZurichSwitzerland
  2. 2.Liver CenterAcademic Medical CenterAmsterdamThe Netherlands

Personalised recommendations