Explicit Coleman Integration for Hyperelliptic Curves

  • Jennifer S. Balakrishnan
  • Robert W. Bradshaw
  • Kiran S. Kedlaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6197)


Coleman’s theory of p-adic integration figures prominently in several number-theoretic applications, such as finding torsion and rational points on curves, and computing p-adic regulators in K-theory (including p-adic heights on elliptic curves). We describe an algorithm for computing Coleman integrals on hyperelliptic curves, and its implementation in Sage.


Hyperelliptic Curve Weierstrass Point Torsion Point Multiple Zeta Height Pairing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balakrishnan, J.S.: Local heights on hyperelliptic curves (2010) (in preparation)Google Scholar
  2. 2.
    Berkovich, V.G.: Integration of one-forms on p-adic analytic spaces. Annals of Mathematics Studies, vol. 162. Princeton University Press, Princeton (2007)Google Scholar
  3. 3.
    Besser, A.: Coleman integration using the Tannakian formalism. Math. Ann. 322(1), 19–48 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Besser, A.: On the computation of p-adic height pairings on Jacobians of hyperelliptic curves, Sage Days 5 (2007),
  5. 5.
    Besser, A., de Jeu, R.: Li(p)-service? An algorithm for computing p-adic polylogarithms. Math. Comp. 77(262), 1105–1134 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis: A systematic approach to rigid analytic geometry. Springer, Berlin (1984)zbMATHGoogle Scholar
  7. 7.
    Castryck, W., Denef, J., Vercauteren, F.: Computing zeta functions of nondegenerate curves. IMRP Int. Math. Res. Pap., Art. ID 72017, 57 (2006)Google Scholar
  8. 8.
    Coleman, R., de Shalit, E.: p-adic regulators on curves and special values of p-adic L-functions. Invent. Math. 93(2), 239–266 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Coleman, R.F.: Dilogarithms, regulators and p-adic L-functions. Invent. Math. 69(2), 171–208 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Coleman, R.F.: Torsion points on curves and p-adic abelian integrals. Ann. of Math (2) 121(1), 111–168 (1985)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Coleman, R.F., Gross, B.H.: p-adic heights on curves. In: Algebraic Number Theory – in honor of K. Iwasawa. Advanced Studies in Pure Mathematics, vol. 17, pp. 73–81 (1989)Google Scholar
  12. 12.
    Fresnel, J., van der Put, M.: Rigid analytic geometry and its applications. In: Progress in Mathematics, vol. 218. Birkhäuser Boston Inc., Boston (2004)Google Scholar
  13. 13.
    Furusho, H.: p-adic multiple zeta values. II. Tannakian interpretations. Amer. J. Math. 129(4), 1105–1144 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gaudry, P., Gürel, N.: An extension of Kedlaya’s point-counting algorithm to superelliptic curves. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 480–494. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Harvey, D.: Kedlaya’s algorithm in larger characteristic. Int Math Res Notices 2007, 29 (2007), article id no. rnm095Google Scholar
  16. 16.
    Harvey, D.: Efficient computation of p-adic heights. LMS J. Comput. Math. 11, 40–59 (2008)MathSciNetGoogle Scholar
  17. 17.
    Kedlaya, K.S.: Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. J. Ramanujan Math. Soc. 16, 323–338 (2001); erratum ibid 18, 417–418 (2003)Google Scholar
  18. 18.
    Kim, M.: The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci. 45(1), 89–133 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kim, M.: Massey products for elliptic curves of rank 1. J. Amer. Math. Soc. 23, 725–747 (2010); Erratum by Balakrishnan, J.S., Kedlaya, K.S., Kim, M.:
  20. 20.
    Lauder, A.G.B.: Deformation theory and the computation of zeta functions. Proc. London Math. Soc (3) 88(3), 565–602 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Leprévost, F.: Jacobiennes de certaines courbes de genre 2: torsion et simplicité. J. Théor. Nombres Bordeaux 7(1), 283–306 (1995)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Mazur, B., Stein, W., Tate, J.: Computation of p-adic heights and log convergence. Doc. Math. Extra, 577–614 (2006) (electronic)MathSciNetGoogle Scholar
  23. 23.
    McCallum, W., Poonen, B.: The method of Chabauty and Coleman (2007) (preprint)Google Scholar
  24. 24.
    Stein, W.A., et al.: Sage Mathematics Software (Version 4.3.5), The Sage Development Team (2010),

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jennifer S. Balakrishnan
    • 1
  • Robert W. Bradshaw
    • 2
  • Kiran S. Kedlaya
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.University of WashingtonSeattleUSA

Personalised recommendations