Hyperbolic Tessellations Associated to Bianchi Groups

  • Dan Yasaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6197)

Abstract

Let F/ℚ be a number field. The space of positive definite binary Hermitian forms over F form an open cone in a real vector space. There is a natural decomposition of this cone into subcones. In the case of an imaginary quadratic field these subcones descend to hyperbolic space to give rise to tessellations of 3-dimensional hyperbolic space by ideal polytopes. We compute the structure of these polytopes for a range of imaginary quadratic fields.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ash, A.: Deformation retracts with lowest possible dimension of arithmetic quotients of self-adjoint homogeneous cones. Math. Ann. 225(1), 69–76 (1977)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berkove, E.: The mod-2 cohomology of the Bianchi groups. Trans. Amer. Math. Soc. 352(10), 4585–4602 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berkove, E.: The integral cohomology of the Bianchi groups. Trans. Amer. Math. Soc. 358(3), 1033–1049 (2006) (electronic)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997); Computational algebra and number theory, London (1993) Google Scholar
  5. 5.
    Bygott, J.: Modular forms and modular symbols over imaginary quadratic fields, Ph.D. thesis, Exeter University (1998)Google Scholar
  6. 6.
    Cremona, J.E., Whitley, E.: Periods of cusp forms and elliptic curves over imaginary quadratic fields. Math. Comp. 62(205), 407–429 (1994)MATHMathSciNetGoogle Scholar
  7. 7.
    Cremona, J.E.: Periods of cusp forms and elliptic curves over imaginary quadratic fields. In: Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, pp. 29–44. Amer. Math. Soc., Providence (1994)Google Scholar
  8. 8.
    Fine, B.: The HNN and generalized free product structure of certain linear groups. Bull. Amer. Math. Soc. 81, 413–416 (1975)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Finis, T., Grunewald, F., Tirao, P.: The cohomology of lattices in SL(2, C). Experiment. Math. 19(1), 29–63 (2010)MATHMathSciNetGoogle Scholar
  10. 10.
    Goncharov, A.B.: Euler complexes and geometry of modular varieties. Geom. Funct. Anal. 17(6), 1872–1914 (2008)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gunnells, P.E.: Modular symbols for Q-rank one groups and Voronoĭ reduction. J. Number Theory 75(2), 198–219 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gunnells, P.E., Yasaki, D.: Hecke operators and Hilbert modular forms. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp. 387–401. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Koecher, M.: Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. I. Math. Ann. 141, 384–432 (1960)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lingham, M.: Modular forms and elliptic curves over imaginary quadratic fields, Ph.D. thesis, University of Nottingham (2005)Google Scholar
  15. 15.
    Macbeath, A.M.: Groups of homeomorphisms of a simply connected space. Ann. of Math. 79(2), 473–488 (1964)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ong, H.E.: Perfect quadratic forms over real-quadratic number fields. Geom. Dedicata 20(1), 51–77 (1986)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Rahm, A., Fuchs, M.: The integral homology of PSL2 of imaginary quadratic integers with non-trivial class group, arXiv:0903.4517 (2009)Google Scholar
  18. 18.
    Riley, R.: Applications of a computer implementation of Poincaré’s theorem on fundamental polyhedra. Math. Comp. 40(162), 607–632 (1983)MATHMathSciNetGoogle Scholar
  19. 19.
    Şengün, M.H., Turkelli, S.: Weight reduction for \(\bmod l\) Bianchi modular forms. J. Number Theory 129(8), 2010–2019 (2009)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Swan, R.G.: Generators and relations for certain special linear groups. Advances in Math. 6, 1–77 (1971)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Weil, A.: On discrete subgroups of Lie groups. Ann. of Math. 72(2), 369–384 (1960)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Whitley, E.: Modular symbols and elliptic curves over imaginary quadratic number fields, Ph.D. thesis, Exeter University (1990)Google Scholar
  23. 23.
    Yasaki, D.: Binary Hermitian forms over a cyclotomic field. J. Algebra 322, 4132–4142 (2009)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dan Yasaki
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of North Carolina at GreensboroGreensboroUSA

Personalised recommendations