Sieving for Pseudosquares and Pseudocubes in Parallel Using Doubly-Focused Enumeration and Wheel Datastructures

  • Jonathan P. Sorenson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6197)


We extend the known tables of pseudosquares and pseudocubes, discuss the implications of these new data on the conjectured distribution of pseudosquares and pseudocubes, and present the details of the algorithm used to do this work. Our algorithm is based on the space-saving wheel data structure combined with doubly-focused enumeration, run in parallel on a cluster supercomputer.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. of Math. 160(2), 781–793 (2004), zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bernstein, D.J.: Doubly focused enumeration of locally square polynomial values. In: High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, Fields Inst. Commun., vol. 41, pp. 69–76. Amer. Math. Soc., Providence (2004)Google Scholar
  3. 3.
    Bernstein, D.J.: Proving primality in essentially quartic random time. Math. Comp. 76(257), 389–403 (2007), (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berrizbeitia, P., Müller, S., Williams, H.C.: Pseudocubes and primality testing. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 102–116. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford (1979)zbMATHGoogle Scholar
  6. 6.
    Lukes, R.F., Patterson, C.D., Williams, H.C.: Some results on pseudosquares. Math. Comp. 65(213), 361–372, S25–S27 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Pomerance, C., Shparlinski, I.E.: On pseudosquares and pseudopowers. In: Combinatorial Number Theory, pp. 171–184. Walter de Gruyter, Berlin (2009)Google Scholar
  8. 8.
    Schinzel, A.: On pseudosquares. New Trends in Prob. and Stat. 4, 213–220 (1997)MathSciNetGoogle Scholar
  9. 9.
    Schroeppel, R.: Private communication (February 2010)Google Scholar
  10. 10.
    Sorenson, J.P.: The pseudosquares prime sieve. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 193–207. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Stephens, A.J., Williams, H.C.: An open architecture number sieve. In: Number theory and cryptography (Sydney, 1989). London Math. Soc. Lecture Note Ser., vol. 154, pp. 38–75. Cambridge Univ. Press, Cambridge (1990)Google Scholar
  12. 12.
    Williams, H.C.: Édouard Lucas and primality testing. Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 22. John Wiley & Sons Inc, New York (1998), A Wiley-Interscience Publication zbMATHGoogle Scholar
  13. 13.
    Wooding, K.: The Sieve Problem in One- and Two-Dimensions. Ph.D. thesis, The University of Calgary, Calgary, AB (April 2010)
  14. 14.
    Wooding, K., Williams, H.C.: Doubly-focused enumeration of pseudosquares and pseudocubes. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 208–221. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Wooding, K., Williams, H.C.: Improved primality proving with Eisenstein pseudocubes. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197, pp. 372–384. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jonathan P. Sorenson
    • 1
  1. 1.Butler UniversityIndianapolisUSA

Personalised recommendations