Advertisement

Factoring Polynomials over Local Fields II

  • Sebastian Pauli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6197)

Abstract

We present an algorithm for factoring polynomials over local fields, in which the Montes algorithm is combined with elements from Zassenhaus Round Four algorithm. This algorithm avoids the computation of characteristic polynomials and the resulting precision problems that occur in the Round Four algorithm.

Keywords

Power Product Computer Algebra System Residue Class Irreducible Factor Newton Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cannon, J.J., et al.: The computer algebra system Magma. University of Sydney (2010), http://magma.maths.usyd.edu.au/magma/
  2. 2.
    Cantor, D.G., Gordon, D.: Factoring polynomials over p-adic fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 185–208. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Ford, D., Letard, P.: Implementing the Round Four maximal order algorithm. Journal de Théorie des Nombres de Bordeaux 6, 39–80 (1994)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Ford, D., Pauli, S., Roblot, X.-F.: A Fast Algorithm for Polynomial Factorization over ℚp. Journal de Théorie des Nombres de Bordeaux 14, 151–169 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Ford, D., Veres, O.: On the Complexity of the Montes Ideal Factorization Algorithm. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX, July 19-23. LNCS, vol. 6197, pp. 174–185. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Kaltofen, E., Shoup, V.: Subquadratic-time factoring of polynomials over finite fields. Math. Comp. 67 (1998)Google Scholar
  7. 7.
    Guardia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory (2008), arXiv:0807.2620Google Scholar
  8. 8.
    Guardia, J., Montes, J., Nart, E.: Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields (2008), arXiv:0807.4065Google Scholar
  9. 9.
    MacLane, S.: A Construction for absolute values in polynomial rings. Trans. Amer. Math. Soc. 40, 363–395 (1936)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Montes, J., Nart, E.: On a Theorem of Ore. Journal of Algebra 146, 318–334 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Montes, J.: Polígonos de Newton de orden superior y aplicaciones aritméticas, PhD Thesis, Universitat de Barcelona (1999)Google Scholar
  12. 12.
    Ore, Ö.: Newtonsche Polygone in der Theorie der algebraischen Körper. Math. Ann. 99, 84–117 (1928)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    PARI/GP, version 2.3.4, Bordeaux (2008), http://pari.math.u-bordeaux.fr/
  14. 14.
    Pauli, S.: Factoring polynomials over local fields. J. Symb. Comp. 32, 533–547 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)zbMATHCrossRefGoogle Scholar
  16. 16.
    Stein, W., et al.: SAGE: Software for Algebra and Geometry Experimentation (2007), http://www.sagemath.org
  17. 17.
    Veres, O.: On the Complexity of Polynomial Factorization over p-adic Fields, PhD Dissertation, Concordia University, Montreal (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sebastian Pauli
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of North Carolina at GreensboroGreensboroUSA

Personalised recommendations