Advertisement

Small-Span Characteristic Polynomials of Integer Symmetric Matrices

  • James McKee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6197)

Abstract

Let f(x) ∈ Z[x] be a totally real polynomial with roots α 1 ≤ ... ≤ α d . The span of f(x) is defined to be α d  − α 1. Monic irreducible f(x) of span less than 4 are special. In this paper we give a complete classification of those small-span polynomials which arise as characteristic polynomials of integer symmetric matrices. As one application, we find some low-degree polynomials that do not arise as the minimal polynomial of any integer symmetric matrix: these provide low-degree counterexamples to a conjecture of Estes and Guralnick [6].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass, H., Guralnick, R., Estes, D.: Eigenvalues of symmetric matrices and graphs. J. Algebra 168, 536–567 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Capparelli, S., Del Fra, A., Sciò, C.: On the span of polynomials with integer coefficients. Math. Comp. 79, 967–981 (2010)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cauchy, A.: Sur l’équation a l’aide de laquelle on determine les inégalités séculaires des mouvements des planètes. In: Oeuvres Complètes d’ Augustin Cauchy Seconde Série IX, pp. 174–195. Gauthier-Villars, Berkeley (1891)Google Scholar
  4. 4.
    Dobrowolski, E.: A note on integer symmetric matrices and Mahler’s measure. Canadian Mathematical Bulletin 51(1), 57–59 (2008)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Estes, D.: Eigenvalues of symmetric integer matrices. J. Number Theory 42, 292–296 (1992)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Estes, D.R., Guralnick, R.M.: Minimal polynomials of integral symmetric matrices. Linear Algebra and its Applications 192, 83–99 (1993)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fisk, S.: A very short proof of Cauchy’s interlace theorem. Amer. Math. Monthly 112, 118 (2005)Google Scholar
  8. 8.
    Godsil, C., Royle, G.: Algebraic Graph Theory. In: Graduate Texts in Mathematics, vol. 207. Springer, New York (2000)Google Scholar
  9. 9.
    Hartley, B., Hawkes, T.O.: Rings, modules and linear algebra. Chapman and Hall, Boca Raton (1970)MATHGoogle Scholar
  10. 10.
    Hwang, S.-G.: Cauchy’s interlace theorem for eigenvalues of Hermitian matrices. Amer. Math. Monthly 112, 157–159 (2004)CrossRefGoogle Scholar
  11. 11.
    Kronecker, L.: Zwei sätse über gleichungen mit ganzzahligen coefficienten. J. Reine Angew. Math. 53, 173–175 (1857)MATHGoogle Scholar
  12. 12.
    Lehmer, E.: A numerical function applied to cyclotomy. Bull. Amer. Math, Soc. 36, 291–298 (1930)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    McKee, J.F., Smyth, C.J.: Integer symmetric matrices having all their eigenvalues in the interval [ − 2,2]. J. Algebra 317, 260–290 (2007)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    McKee, J.F., Smyth, C.J.: Integer symmetric matrices of small spectral radius and small Mahler measure, arXiv:0907.0371v1Google Scholar
  15. 15.
    Batut, C., Belebas, K., Bernardi, D., Cohen, H., Olivier, M.: PARI/GP version 2.3.4, http://pari.math.u-bordeaux.fr/
  16. 16.
    Petrović, M.M.: On graphs whose spectral spread does not exceed 4. Publ. Inst. Math. Beograd 34(48), 169–174 (1983)MathSciNetGoogle Scholar
  17. 17.
    Robinson, R.M.: Intervals containing infinitely many sets of conjugate algebraic integers. In: Mathematical Analysis and Related Topics: Essays in Honor of George Pólya, Stanford, pp. 305–315 (1962)Google Scholar
  18. 18.
    Robinson, R.M.: Algebraic equations with span less than 4. Math. Comp. 18(88), 547–559 (1964)MATHMathSciNetGoogle Scholar
  19. 19.
    Schur, I.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 1, 377–402 (1918)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • James McKee
    • 1
  1. 1.Department of MathematicsRoyal Holloway, University of LondonEgham Hill, Egham, SurreyEngland, UK

Personalised recommendations