Efficient Pairing Computation with Theta Functions

  • David Lubicz
  • Damien Robert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6197)

Abstract

In this paper, we present a new approach based on theta functions to compute Weil and Tate pairings. A benefit of our method, which does not rely on the classical Miller’s algorithm, is its generality since it extends to all abelian varieties the classical Weil and Tate pairing formulas. In the case of dimension 1 and 2 abelian varieties our algorithms lead to implementations which are efficient and naturally deterministic. We also introduce symmetric Weil and Tate pairings on Kummer varieties and explain how to compute them efficiently. We exhibit a nice algorithmic compatibility between some algebraic groups quotiented by the action of the automorphism − 1, where the ℤ-action can be computed efficiently with a Montgomery ladder type algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkenhake, C., Lange, H.: Complex abelian varieties, 2nd edn. Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 302. Springer, Berlin (2004)MATHGoogle Scholar
  2. 2.
    Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F. (eds.): Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics and its Applications. Chapman & Hall/CRC (2006)Google Scholar
  3. 3.
    Galbraith, S., Lin, X.: Computing pairings using x-coordinates only. Designs, Codes and Cryptography (2008)Google Scholar
  4. 4.
    Gaudry, P.: Fast genus 2 arithmetic based on Theta functions. J. of Mathematical Cryptology 1, 243–265 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines. Finite Fields Appl. 15(2), 246–260 (2009)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Igusa, J.-i.: Theta functions. Springer, New York (1972); Die Grundlehren der mathematischen Wissenschaften, Band 194 Google Scholar
  7. 7.
    Koizumi, S.: Theta relations and projective normality of Abelian varieties. Amer. J. Math. 98(4), 865–889 (1976)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lang, S.: Reciprocity and correspondences. Amer. J. Math. 80, 431–440 (1958)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lichtenbaum, S.: Duality theorems for curves over p-adic fields. Invent. Math. 7, 120–136 (1969)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lubicz, D., Robert, D.: Computing isogenies between abelian varieties (2010), http://arxiv.org/abs/1001.2016
  11. 11.
    Mumford, D.: On the equations defining abelian varieties. I. Invent. Math. 1, 287–354 (1966)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Mumford, D.: On the equations defining abelian varieties. II. Invent. Math. 3, 75–135 (1967)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Mumford, D.: Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Published for the Tata Institute of Fundamental Research, Bombay (1970)MATHGoogle Scholar
  14. 14.
    Mumford, D.: Tata lectures on theta I. Progress in Mathematics, vol. 28. Birkhäuser Boston Inc., Boston (1983); With the assistance of Musili, C., Nori, M., Previato E., Stillman, M. Google Scholar
  15. 15.
    Mumford, D.: Tata lectures on theta II. Progress in Mathematics, vol. 43. Birkhäuser Boston Inc., Boston (1984); Jacobian theta functions and differential equations, With the collaboration of Musili, C., Nori, M., Previato, E., Stillman, M., Umemura, H. Google Scholar
  16. 16.
    Silverman, J.H.: The arithmetic of elliptic curves. Graduate Texts in Mathematics, vol. 106. Springer, New York (1986); Corrected reprint of the 1986 original (1986) MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Lubicz
    • 1
    • 2
  • Damien Robert
    • 3
  1. 1.DGA-MI, BP 7419Bruz
  2. 2.IRMAR, Universté de Rennes 1Rennes
  3. 3.LORIA, CARAMEL ProjectVandoeuvre-lès-Nancy Cedex

Personalised recommendations