Huff’s Model for Elliptic Curves

  • Marc Joye
  • Mehdi Tibouchi
  • Damien Vergnaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6197)

Abstract

This paper revisits a model for elliptic curves over ℚ introduced by Huff in 1948 to study a diophantine problem. Huff’s model readily extends over fields of odd characteristic. Every elliptic curve over such a field and containing a copy of ℤ/4ℤ ×ℤ/2ℤ is birationally equivalent to a Huff curve over the original field.

This paper extends and generalizes Huff’s model. It presents fast explicit formulæ for point addition and doubling on Huff curves. It also addresses the problem of the efficient evaluation of pairings over Huff curves. Remarkably, the so-obtained formulæ feature some useful properties, including completeness and independence of the curve parameters.

Keywords

Elliptic curves Huff’s model unified addition law complete addition law explicit formulæ scalar multiplication Tate pairing Miller’s algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arène, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster computation of the Tate pairing. In: Cryptology ePrint Archive, Report 2009/155 (2009), http://eprint.iacr.org/
  2. 2.
    Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Math. Comp. 61(203), 29–68 (1993)MATHMathSciNetGoogle Scholar
  3. 3.
    Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient implementation of pairing-based cryptosystems. J. Cryptology 17(4), 321–334 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bernstein, D.J., Lange, T.: Explicit-formulas database, http://www.hyperelliptic.org/EFD/
  7. 7.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Bernstein, D.J., Lange, T.: Inverted Edwards coordinates. In: Boztaş, S., Lu, H.-F(F.) (eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bernstein, D.J., Lange, T., Farashahi, R.R.: Binary Edwards curves. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 244–265. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography, ch. V. London Mathematical Society Lecture Note Series, vol. 317. Cambridge University Press, Cambridge (2005)Google Scholar
  11. 11.
    Das, M.P.L., Sarkar, P.: Pairing computation on twisted Edwards form elliptic curves. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 192–210. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Edwards, H.M.: A normal form for elliptic curves. Bull. Am. Math. Soc., New Ser. 44(3), 393–422 (2007)MATHCrossRefGoogle Scholar
  13. 13.
    Goldwasser, S., Kilian, J.: Primality testing using elliptic curves. J. ACM 46(4), 450–472 (1999)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revisited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Huff, G.B.: Diophantine problems in geometry and elliptic ternary forms. Duke Math. J. 15, 443–453 (1948)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ionica, S., Joux, A.: Another approach to pairing computation in Edwards coordinates. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 400–413. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Koblitz, A.H., Koblitz, N., Menezes, A.: Elliptic curve cryptography: The serpentine course of a paradigm shift. J. Number Theory (to appear)Google Scholar
  18. 18.
    Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 203–209 (1987)MATHMathSciNetGoogle Scholar
  19. 19.
    Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math. 126(2), 649–673 (1987)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  21. 21.
    Miller, V.S.: The Weil paring, and its efficient implementation. J. Cryptology 17(1), 235–261 (2004)MATHMathSciNetGoogle Scholar
  22. 22.
    Montgomery, P.L.: Speeding up the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)MATHMathSciNetGoogle Scholar
  23. 23.
    Morain, F.: Primality proving using elliptic curves: An update. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 111–127. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Peeples Jr., W.D.: Elliptic curves and rational distance sets. Proc. Am. Math. Soc. 5, 29–33 (1954)MATHMathSciNetGoogle Scholar
  25. 25.
    Silverman, J.H.: The Arithmetic of Elliptic Curves, ch III. Graduate Texts in Mathematics, vol. 106. Springer, Heidelberg (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marc Joye
    • 1
  • Mehdi Tibouchi
    • 2
  • Damien Vergnaud
    • 2
  1. 1.Technicolor, Security & Content Protection LabsCesson-Sévigné CedexFrance
  2. 2.École Normale Supérieure – C.N.R.S. – I.N.R.I.A.Paris CEDEX 05France

Personalised recommendations