Pairing the Volcano

  • Sorina Ionica
  • Antoine Joux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6197)

Abstract

Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are ℓ-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel’s and Fouquet-Morain algorithms, we take many steps before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points P of order ℓ such that the subgroup generated by P is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belding, J., Broker, R., Enge, A., Lauter, K.: Computing Hilbert Class Polynomials. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp. 282–295. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bisson, G., Sutherland, A.: Computing the endomorphism ring of an ordinary elliptic curve over a finite field. Journal of Number Theory (to appear 2010)Google Scholar
  3. 3.
    Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography. London Mathematical Society Lecture Note Series, vol. 317. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar
  4. 4.
    Broker, R., Lauter, K., Sutherland, A.: Computing modular polynomials with the chinese remainder theorem (2009), http://arxiv.org/abs/1001.0402
  5. 5.
    Cox, D.A.: Primes of the Form x 2 + ny 2: Fermat, class field theory, and complex multiplication. John Wiley & Sons, Inc., Chichester (1989)MATHGoogle Scholar
  6. 6.
    Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkorper. Abh. Math. Sem. Hansischen Univ., vol. 14 (1941)Google Scholar
  7. 7.
    Fouquet, M.: Anneau d’endomorphismes et cardinalité des courbes elliptiques: aspects algorithmiques. PhD thesis, Ecole Polytechnique (2001)Google Scholar
  8. 8.
    Fouquet, M., Morain, F.: Isogeny Volcanoes and the SEA Algorithm. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 276–291. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Frey, G.: Applications of arithmetical geometry to cryptographic constructions. In: Proceedings of the Fifth International Conference on Finite Fields and Applications, pp. 128–161. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    Grabher, P., Großschädl, J., Page, D.: On software parallel implementation of cryptographic pairings. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 35–50. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Ionica, S.: Algorithmique des couplages et cryptographie. PhD thesis, Université de Versailles St-Quentin-en-Yvelines (2010)Google Scholar
  12. 12.
    Joux, A., Nguyen, K.: Separating decision Diffie–Hellman from computational Diffie–Hellman in cryptographic groups. Journal of Cryptology 16(4), 239–247 (2003)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lenstra Jr., H.W.: Complex multiplication structure of elliptic curves. Journal of Number Theory 56(2), 227–241 (1996)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kohel, D.: Endomorphism rings of elliptic curves over finite fields. PhD thesis, University of California, Berkeley (1996)Google Scholar
  15. 15.
    Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology 17(4), 235–261 (2004)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Miret, J., Moreno, R., Sadornil, D., Tena, J., Valls, M.: An algorithm to compute volcanoes of 2-isogenies of elliptic curves over finite fields. Applied Mathematics and Computation 176(2), 739–750 (2006)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Miret, J., Moreno, R., Sadornil, D., Tena, J., Valls, M.: Computing the height of volcanoes of l-isogenies of elliptic curves over finite fields. Applied Mathematics and Computation 196(1), 67–76 (2008)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Montgomery, P.L.: A FFT extension of the elliptic curve method of factorization. PhD thesis, University of California (1992)Google Scholar
  19. 19.
    Ruck, H.-G.: A note on elliptic curves over finite fields. Mathematics of Computation 179, 301–304 (1987)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Schoof, R.: Counting points on elliptic curves over finite fields. Journal de Theorie des Nombres de Bordeaux 7, 219–254 (1995)MATHMathSciNetGoogle Scholar
  21. 21.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, Heidelberg (1986)MATHGoogle Scholar
  22. 22.
    Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 151. Springer, Heidelberg (1994)MATHGoogle Scholar
  23. 23.
    Sutherland, A.: Computing Hilbert Class Polynomials with the Chinese Remainder Theorem. Mathematics of Computation (2010)Google Scholar
  24. 24.
    Vélu, J.: Isogenies entre courbes elliptiques. Comptes Rendus De L’Academie Des Sciences Paris, Serie I-Mathematique, Serie A. 273, 238–241 (1971)MATHGoogle Scholar
  25. 25.
    von zur Gathen, J., Shoup, V.: Computing Frobenius maps and factoring polynomials. Computational Complexity 2, 187–224 (1992)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sorina Ionica
    • 1
  • Antoine Joux
    • 1
    • 2
  1. 1.Université de Versailles Saint-Quentin-en-YvelinesVersailles CEDEXFrance
  2. 2.DGA 

Personalised recommendations