Advertisement

Congruent Number Theta Coefficients to 1012

  • William B. Hart
  • Gonzalo Tornaría
  • Mark Watkins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6197)

Abstract

We report on a computation of congruent numbers, which subject to the Birch and Swinnerton-Dyer conjecture is an accurate list up to 1012. The computation involves multiplying long theta series as per Tunnell (1983). The method, which we describe in some detail, uses a multimodular disk based technique for multiplying polynomials out-of-core which minimises expensive disk access by keeping data truncated.

Keywords

Modular Form Elliptic Curf Arithmetic Progression Polynomial Multiplication Theta Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alter, R., Curtz, T.B., Kubota, K.K.: Remarks and results on congruent numbers. In: Proc. Third Southeastern Conf. on Combinatorics, Graph Theory and Computing, pp. 27–35 (1972)Google Scholar
  2. 2.
    Argüello, F., Amor, M., Zapata, E.L.: Implementation of parallel FFT algorithms on distributed memory machines with a minimum overhead of communication. Parallel Comput. 22(9), 1255–1279 (1996)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bailey, D.H.: FFTs in external or hierarchical memory. J. Supercomput. 4, 23–35 (1990)CrossRefGoogle Scholar
  4. 4.
    Bailey, D.H.: The computation of π to 29,360,000 decimal digits using Borweins’ quartically convergent algorithm. Math. Comp. 50(181), 283–296 (1988)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bastien, L.: Nombres congruents. Intermédiaire Math. 22, 231–232 (1915)Google Scholar
  6. 6.
    Bellard, F.: Computation of 2700 billion decimal digits of Pi using a Desktop Computer (2010), http://bellard.org/pi/pi2700e9/pipcrecord.pdf
  7. 7.
    Birch, B.J., Stephens, N.M.: The parity of the rank of the Mordell-Weil group. Topology 5, 295–299 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Calvin, C.: Implementation of parallel FFT algorithms on distributed memory machines with a minimum overhead of communication. Parallel Comput. 22(9), 1255–1279 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Cormen, T.H.: Determining an out-of-core FFT decomposition strategy for parallel disks by dynamic programming. In: Algorithms for Parallel Processing IMA, Math. Appl., vol. 105, pp. 307–320. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Dickson, L.E.: History of the Theory of Numbers II. Carnegie Intitute of Washington (1920); Reprinted Chelsea (1966)Google Scholar
  12. 12.
  13. 13.
    Feng, K.: Non-congruent Numbers, Odd graphs and the B-S-D Conjecture. Acta Arith. LXXV(1), 71–83 (1996)Google Scholar
  14. 14.
    Feng, K., Xue, Y.: New series of odd non-congruent numbers. Science in China Series A: Mathematics 49(11), 1642–1654 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    GMP: The GNU Multi-Precision Library, http://gmplib.org/
  16. 16.
    Gourdon, X.: PiFast prime digit program (2004), http://numbers.computation.free.fr/Constants/PiProgram/pifast.html
  17. 17.
    Guy, R.K.: Unsolved Problems in Number Theory. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  18. 18.
    Hart, W.B.: Fast Library for Number Theory (FLINT), www.flintlib.org
  19. 19.
    Heideman, M.T., Johnson, D.H., Burrus, C.S.: Gauss and the history of the fast Fourier transform. IEEE ASSP Magazine 1(4), 14–21 (1984)CrossRefGoogle Scholar
  20. 20.
    Gentleman, W.M., Sande, G.: Fast Fourier Transforms - For Fun and Profit. In: AFIPS Proceedings, vol. 29, pp. 563–578 (1966)Google Scholar
  21. 21.
    Harvey, D.: A cache-friendly truncated FFT. Theor. Comput. Sci. 410, 2649–2658 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
  23. 23.
    Lagrange, J.: Thèse d’Etat de l’Université de Reims (1976)Google Scholar
  24. 24.
    Johnsson, S.L., Jacquemin, M., Krawitz, R.L.: Communication efficient multi-processor FFT. J. Comput. Phys. 102(2), 381–397 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Koblitz, N.: Introduction to Elliptic Curves and Modular Forms, 2nd edn. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  26. 26.
    Kramarz, G.: All congruent numbers less than 2000. Math. Annalen 273, 337–340 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Lemmermeyer, F.: Some families of non-congruent numbers. Acta. Arith. 110, 15–36 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Monsky, P.: Mock Heegner Points and Congruent Numbers. Math. Z. 204, 45–68 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    MPIR: Multiple Precision Integers and Rationals, http://www.mpir.org/
  30. 30.
    Ono, K.: The web of modularity: Arithmetic of the coefficients of modular forms and q-series. In: CBMS Conference Series, vol. 102. Amer. Math. Soc., Providence (2004)Google Scholar
  31. 31.
    Na’mneh, R.A., Pan, D.W.: Five-step FFT algorithm with reduced computational complexity. Inform. Process. Lett. 101(6), 262–267 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Rogers, N.F.: Rank computations for the congruent number elliptic curves. Eperiment. Math. 9(4), 591–594 (2000)zbMATHGoogle Scholar
  33. 33.
    Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7(3-4), 281–292 (1971)zbMATHCrossRefGoogle Scholar
  34. 34.
    Shoup, V.: NTL: Number Theory Library, http://www.shoup.net/ntl/
  35. 35.
    Stephens, N.M.: Congruence properties of congruent numbers. Bull. London Math. Soc. 7, 182–184 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Swarztrauber, P.: Multiprocessor FFTs. Proceedings of the international conference on vector and parallel computing—issues in applied research and development (Loen, 1986). Parallel Comput. 5(1-2), 197–210 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Takahashi, D.: Calculation of π to 51.5 billion decimal digits on distributed memory parallel processors. Trans. Inform. Process. Soc. Japan 39(7), 2074–2083 (1998)MathSciNetGoogle Scholar
  38. 38.
    Temperton, C.: Implementation of a prime factor FFT algorithm on CRAY-1. Parallel Comput. 6(1), 99–108 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Tunnell, J.B.: A classical diophantine problem and modular forms of weight 3/2. Invent. Math. 72, 323–334 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory. I. Two-level memories. Algorithmica 12(2-3), 110–147 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Winkler, F.: Polynomial Algorithms in Computer Algebra. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  42. 42.
    Yoshida, S.-i.: Some variants of the congruent number problem, I, II. Kyushu J. Math. 55(2), 387–404 (2001), 56(1), 147–165 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • William B. Hart
    • 1
  • Gonzalo Tornaría
    • 2
  • Mark Watkins
    • 3
  1. 1.Mathematics InstituteWarwick UniversityCoventryUnited Kingdom
  2. 2.Centro de MatemáticaUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Department of Mathematics and StatisticsUniversity of SydneyAustralia

Personalised recommendations