Differential Dynamic Logic dℒ

Chapter

Synopsis

Hybrid systems are models for complex physical systems and are defined as dynamical systems with interacting discrete transitions and continuous evolutions along differential equations. With the goal of developing a theoretical and practical foundation for deductive verification of hybrid systems, we introduce a dynamic logic for hybrid programs, which is a program notation for hybrid systems. As a verification technique that is suitable for automation, we introduce a free-variable proof calculus with a novel combination of real-valued free variables and Skolemisation for lifting quantifier elimination for real arithmetic to dynamic logic. The calculus is compositional, i.e., it reduces properties of hybrid programs to properties of their parts. Our main result proves that this calculus axiomatises the transition behaviour of hybrid systems completely relative to differential equations. In a study with cooperating traffic agents of the European Train Control System, we further show that our calculus is well suited for verifying realistic hybrid systems with parametric system dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 253.
    Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: FOCS, pp. 109–121. IEEE (1976)Google Scholar
  2. 15.
    Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: M.D.D. Benedetto, A.L. Sangiovanni-Vincentelli (eds.) HSCC, LNCS, vol. 2034, pp. 63–76. Springer (2001). DOI 10.1007/3-540-45351-2_9Google Scholar
  3. 107.
    van den Dries, L., Miller, C.: On the real exponential field with restricted analytic functions. Israel J. Math. 85(1-3), 19–56 (1994). DOI 10.1007/BF02758635MATHCrossRefMathSciNetGoogle Scholar
  4. 48.
    Blackburn, P.: Internalizing labelled deduction. J. Log. Comput. 10(1), 137–168 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 277.
    Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages? Tech. Rep. PRG-6, Oxford Programming Research Group (1971)Google Scholar
  6. 140.
    Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differential equations. Advances in Applied Mathematics (2007)Google Scholar
  7. 70.
    Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE T. Automat. Contr. 48(1), 64–75 (2003). DOI 10.1109/TAC.2002.806655CrossRefMathSciNetGoogle Scholar
  8. 91.
    Damm, W., Mikschl, A., Oehlerking, J., Olderog, E.R., Pang, J., Platzer, A., Segelken, M., Wirtz, B.: Automating verification of cooperation, control, and design in traffic applications. In: C.B. Jones, Z. Liu, J. Woodcock (eds.) Formal Methods and Hybrid Real-Time Systems, LNCS, vol. 4700, pp. 115–169. Springer (2007). DOI 10.1007/978-3-540-75221-9_6Google Scholar
  9. 137.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Mon. hefte Math. Phys. 38, 173–198 (1931). DOI 10.1007/BF01700692CrossRefGoogle Scholar
  10. 133.
    Gentzen, G.: Untersuchungen über das logische Schließen. Math. Zeit. 39, 405–431 (1935). DOI 10.1007/BF01201363CrossRefMathSciNetGoogle Scholar
  11. 37.
    Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-oriented program verification. In: U. Furbach, N. Shankar (eds.) IJCAR, LNCS, vol. 4130, pp. 266– 280. Springer (2006). DOI 10.1007/11814771_23Google Scholar
  12. 161.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969). DOI 10.1145/363235.363259MATHCrossRefGoogle Scholar
  13. 87.
    Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM J. Comput. 7(1), 70–90 (1978). DOI 10.1137/0207005MATHCrossRefMathSciNetGoogle Scholar
  14. 99.
    Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8), 465–476 (1979). DOI 10.1145/359138.359142MATHCrossRefMathSciNetGoogle Scholar
  15. 45.
    Bianconi, R.: Undefinability results in o-minimal expansions of the real numbers. Ann. Pure Appl. Logic 134(1), 43–51 (2005). DOI 10.1016/j.apal.2004.06.010MATHCrossRefMathSciNetGoogle Scholar
  16. 227.
    Perko, L.: Differential equations and dynamical systems, 3 edn. Springer, New York, NY, USA (2006)Google Scholar
  17. 288.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2 edn. University of California Press, Berkeley (1951)MATHGoogle Scholar
  18. 287.
    Tarski, A.: Sur les ensembles définissables de nombres réels I. Fundam. Math. 17, 210–239 (1931)MATHGoogle Scholar
  19. 123.
    Fitting, M., Mendelsohn, R.L.: First-OrderModal Logic. Kluwer, Norwell, MA, USA (1999)Google Scholar
  20. 156.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  21. 149.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)MATHGoogle Scholar
  22. 125.
    Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity of states. In: J. Flum, M. Rodr´ıguez-Artalejo (eds.) CSL, LNCS, vol. 1683, pp. 126–140. Springer (1999)Google Scholar
  23. 32.
    Beckert, B.: Equality and other theories. In: M. D’Agostino, D. Gabbay, R. Hähnle, J. Posegga (eds.) Handbook of Tableau Methods. Kluwer (1999)Google Scholar
  24. 217.
    Mysore, V., Piazza, C., Mishra, B.: Algorithmic algebraic model checking II: Decidability of semi-algebraic model checking and its applications to systems biology. In: Peled and Tsay [226], pp. 217–233. DOI 10.1007/11562948_18Google Scholar
  25. 90.
    Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents. International Journal of Control 79(5), 395–421 (2006). DOI 10.1080/00207170600587531MATHCrossRefMathSciNetGoogle Scholar
  26. 148.
    Harel, D.: First-Order Dynamic Logic. Springer, New York (1979)MATHGoogle Scholar
  27. 213.
    Morayne, M.: On differentiability of Peano type functions. Colloquium Mathematicum LIII, 129–132 (1987)Google Scholar
  28. 238.
    Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad et al. [41], pp. 473–486. DOI 10.1007/978-3-540-71493-4_37Google Scholar
  29. 8.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995). DOI 10.1016/0304-3975(94)00202-TMATHCrossRefGoogle Scholar
  30. 57.
    Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theor. Comput. Sci. 138(1), 67–100 (1995). DOI 10.1016/0304-3975(94) 00147-BMATHCrossRefMathSciNetGoogle Scholar
  31. 189.
    Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: F.W. Vaandrager, J.H. van Schuppen (eds.) HSCC, LNCS, vol. 1569, pp. 137–151. Springer (1999). DOI 10.1007/3-540-48983-5_15Google Scholar
  32. 81.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991). DOI 10.1016/S0747-7171(08)80152-6MATHCrossRefMathSciNetGoogle Scholar
  33. 147.
    Hähnle, R., Schmitt, P.H.: The liberalized d-rule in free variable semantic tableaux. J. Autom. Reasoning 13(2), 211–221 (1994). DOI 10.1007/BF00881956MATHCrossRefGoogle Scholar
  34. 290.
    Tinelli, C.: Cooperation of background reasoners in theory reasoning by residue sharing. J. Autom. Reasoning 30(1), 1–31 (2003). DOI 10.1023/A:1022587501759MATHCrossRefMathSciNetGoogle Scholar
  35. 108.
    van den Dries, L., Speissegger, P.: The real field with convergent generalized power series. Trans. Amer. Math. Soc. 350, 4377–4421 (1998). DOI 10.1090/S0002-9947-98-02105-9MATHCrossRefMathSciNetGoogle Scholar
  36. 134.
    Giese, M.: Incremental closure of free variable tableaux. In: Goré et al. [139], pp. 545–560. DOI 10.1007/3-540-45744-5_46Google Scholar
  37. 126.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari and Thiele [212], pp. 258–273. DOI 10.1007/b106766Google Scholar
  38. 122.
    Fitting, M.: First-Order Logic and Automated Theorem Proving, 2 edn. Springer, New York (1996)MATHGoogle Scholar
  39. 2.
    Achatz, M., McCallum, S., Weispfenning, V.: Deciding polynomial-exponential problems. In: J.R. Sendra, L. González-Vega (eds.) ISSAC, pp. 215–222. ACM (2008). DOI 10.1145/ 1390768.1390799Google Scholar
  40. 58.
    Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: Model and optimal control theory. IEEE T. Automat. Contr. 43(1), 31–45 (1998). DOI 10.1109/9. 654885MATHCrossRefMathSciNetGoogle Scholar
  41. 231.
    Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems. In: N. Olivetti (ed.) TABLEAUX, LNCS, vol. 4548, pp. 216–232. Springer (2007). DOI 10.1007/978-3-540-73099-6_17Google Scholar
  42. 110.
    Egerstedt, M., Johansson, K.H., Sastry, S., Lygeros, J.: On the regularization of Zeno hybrid automata. Systems and Control Letters 38, 141–150 (1999)MATHCrossRefMathSciNetGoogle Scholar
  43. 279.
    Sibirsky, K.S.: Introduction to Topological Dynamics. Noordhoff, Leyden (1975)Google Scholar
  44. 206.
    Miller, C.L.: Expansions of the real field with power functions. Ann. Pure Appl. Logic 68(1), 79–94 (1994)MATHCrossRefMathSciNetGoogle Scholar
  45. 103.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reasoning 31(1), 33–72 (2003). DOI 10.1023/A:1027357912519MATHCrossRefMathSciNetGoogle Scholar
  46. 21.
    Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler and Pnueli [200], pp. 20–35. DOI 10.1007/3-540-36580-X_5Google Scholar
  47. 297.
    Walter, W.: Ordinary Differential Equations. Springer (1998)Google Scholar
  48. 44.
    Bianconi, R.: Nondefinability results for expansions of the field of real numbers by the exponential function and by the restricted sine functions. J. Symb. Log. 62(4), 1173–1178 (1997)MATHCrossRefMathSciNetGoogle Scholar
  49. 35.
    Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software: The KeY Approach, LNCS, vol. 4334. Springer (2007). DOI 10.1007/978-3-540-69061-0Google Scholar
  50. 182.
    Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443 (1997). DOI 10.1145/256167.256195CrossRefGoogle Scholar
  51. 56.
    Branicky, M.S.: Studies in hybrid systems: Modeling, analysis, and control. Ph.D. thesis, Dept. Elec. Eng. and Computer Sci., Massachusetts Inst. Technol., Cambridge, MA (1995)Google Scholar
  52. 185.
    Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83– 94 (1963)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations