Introduction

Chapter

Abstract

Ensuring correct functioning of complex physical systems is among the most challenging and most important problems in computer science, mathematics, and engineering. In addition to nontrivial underlying physical system dynamics, the behaviour of complex systems is determined increasingly by computerised control and automatic analog or digital decision-making, e.g., in aviation, railway, and automotive applications. At the same time, correct decisions and control of these systems are becoming increasingly important, because more and more safety-critical processes are regulated using automatic or semiautomatic controllers, including the European Train Control System [117], collision avoidance manoeuvres in air traffic control [293, 196, 104, 238, 129, 171], car platooning technology for highways following the California PATH project [166], recent driverless vehicle technology [64], and biomedical applications like automatic glucose regulation for diabetes patients [223]. As a more general phenomenon of complex physical systems that are exemplified in these scenarios, correct system behaviour depends on correct functioning of the interaction of control with physical system dynamics and is not just an isolated property of only the control logic or only the physical system dynamics. These interactions of computation and control are more difficult to understand and get right than isolated systems. Even if the control software does not crash, the system may still malfunction, because the control software could issue unsafe control actions to the physical process. And even if the pure physics of the process is well understood, an attempt to control the process may still become unsafe, e.g., when the controller reacts to situation changes too slowly because computations take too long, or when sensor values are already outdated once the control actions finally take effect. It is the interaction of computation and control that must be taken into account. Systems with such an interaction of discrete dynamics and continuous dynamics are called hybrid dynamical systems, or just hybrid systems for short.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 67.
    Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: CONCUR, pp. 138–152 (2000). DOI 10.1007/3-540-44618-4 12Google Scholar
  2. 23.
    Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular reusable verifier for object-oriented programs. In: F.S. de Boer, M.M. Bonsangue, S. Graf, W.P. de Roever (eds.) FMCO, LNCS, vol. 4111, pp. 364–387. Springer (2005). DOI 10.1007/11804192 17Google Scholar
  3. 70.
    Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE T. Automat. Contr. 48(1), 64–75 (2003). DOI 10.1109/TAC.2002.806655CrossRefMathSciNetGoogle Scholar
  4. 74.
    Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)MATHCrossRefGoogle Scholar
  5. 37.
    Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-oriented program verification. In: U. Furbach, N. Shankar (eds.) IJCAR, LNCS, vol. 4130, pp. 266– 280. Springer (2006). DOI 10.1007/11814771_23Google Scholar
  6. 127.
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. STTT 10(3), 263–279 (2008). DOI 10.1007/s10009-007-0062-xCrossRefMathSciNetGoogle Scholar
  7. 143.
    Gross, J.: Schlussbericht über die Entgleisung von Güterzug 43647 der BLS AG auf der Weiche 34 (Einfahrt Lötschberg-Basisstrecke). Tech. Rep. 07101601, Unfalluntersuchungsstelle Bahnen und Schiffe (2007)Google Scholar
  8. 69.
    Chaochen, Z., Ji,W., Ravn, A.P.: A formal description of hybrid systems. In: Alur et al. [12], pp. 511–530Google Scholar
  9. 201.
    Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In: T.A. Henzinger, S. Sastry (eds.) HSCC, LNCS, vol. 1386, pp. 305–318. Springer (1998). DOI 10.1007/3-540-64358-3 47Google Scholar
  10. 288.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2 edn. University of California Press, Berkeley (1951)MATHGoogle Scholar
  11. 227.
    Perko, L.: Differential equations and dynamical systems, 3 edn. Springer, New York, NY, USA (2006)Google Scholar
  12. 123.
    Fitting, M., Mendelsohn, R.L.: First-OrderModal Logic. Kluwer, Norwell, MA, USA (1999)Google Scholar
  13. 247.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)Google Scholar
  14. 40.
    van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax and consistent equation semantics of hybrid Chi. J. Log. Algebr. Program. 68(1-2), 129–210 (2006). DOI 10.1016/j.jlap.2005.10.005MATHCrossRefMathSciNetGoogle Scholar
  15. 104.
    Dowek, G., Muñoz, C., Carreño, V.A.: Provably safe coordinated strategy for distributed conflict resolution. In: Proceedings of the AIAA Guidance Navigation, and Control Conference and Exhibit 2005, AIAA-2005-6047 (2005)Google Scholar
  16. 217.
    Mysore, V., Piazza, C., Mishra, B.: Algorithmic algebraic model checking II: Decidability of semi-algebraic model checking and its applications to systems biology. In: Peled and Tsay [226], pp. 217–233. DOI 10.1007/11562948 18Google Scholar
  17. 90.
    Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents. International Journal of Control 79(5), 395–421 (2006). DOI 10.1080/00207170600587531MATHCrossRefMathSciNetGoogle Scholar
  18. 43.
    BFU: Investigation report. Tech. Rep. AX001-1-2/02, German Federal Bureau of Aircraft Accidents Investigation (2004)Google Scholar
  19. 98.
    Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Hybrid Systems III, LNCS, vol. 1066, pp. 208–219 (1996)Google Scholar
  20. 238.
    Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad et al. [41], pp. 473–486. DOI 10.1007/978-3-540-71493-4 37Google Scholar
  21. 209.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, New York (1973)Google Scholar
  22. 289.
    Tavernini, L.: Differential automata and their discrete simulators. Non-Linear Anal. 11(6), 665–683 (1987). DOI 10.1016/0362-546X(87)90034-4MATHCrossRefMathSciNetGoogle Scholar
  23. 8.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995). DOI 10.1016/0304-3975(94)00202-TMATHCrossRefGoogle Scholar
  24. 188.
    Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Mathematics of Control, Signals, and Systems 13(1), 1–21 (2000). DOI 10.1007/PL00009858MATHCrossRefMathSciNetGoogle Scholar
  25. 61.
    Bruyère, V., Raskin, J.F.: Real-time model-checking: Parameters everywhere. Logical Methods in Computer Science 3(1) (2007). DOI 10.2168/LMCS-3(1:7)2007. Online journalGoogle Scholar
  26. 6.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In: Mitchell [210], pp. 414–425Google Scholar
  27. 193.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152 (1997)MATHGoogle Scholar
  28. 271.
    Rounds, W.C.: A spatial logic for the hybrid p-calculus. In: Alur and Pappas [14], pp. 508–522. DOI 10.1007/b96398Google Scholar
  29. 126.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari and Thiele [212], pp. 258–273. DOI 10.1007/b106766Google Scholar
  30. 255.
    Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: M. Dezani-Ciancaglini, U. Montanari (eds.) Symposium on Programming, LNCS, vol. 137, pp. 337–351. Springer (1982). DOI 10.1007/3-540-11494-7 22Google Scholar
  31. 183.
    Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-Charon, a modeling language for reconfigurable hybrid systems. In: J.P. Hespanha, A. Tiwari (eds.) HSCC, LNCS, vol. 3927, pp. 392–406. Springer (2006). DOI 10.1007/11730637 30Google Scholar
  32. 208.
    Milner, R.: Communicating and Mobile Systems: the p-Calculus. Cambridge Univ. Press (1999)Google Scholar
  33. 181.
    Kozen, D.: Results on the propositional m-calculus. Theor. Comput. Sci. 27, 333–354 (1983). DOI 10.1016/0304-3975(82)90125-6MATHCrossRefMathSciNetGoogle Scholar
  34. 177.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, New York, NY (1996)Google Scholar
  35. 173.
    Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. In: Etessami and Rajamani [118], pp. 39–51. DOI 10.1007/11513988 6Google Scholar
  36. 115.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: on branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986). DOI 10.1145/4904.4999MATHCrossRefMathSciNetGoogle Scholar
  37. 76.
    Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and debugging. Commun. ACM 52(11), 74–84 (2009). DOI 10.1145/1592761.1592781CrossRefGoogle Scholar
  38. 228.
    Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic algebraic model checking I: Challenges from systems biology. In: Etessami and Rajamani [118], pp. 5–19. DOI 10.1007/11513988 3Google Scholar
  39. 272.
    Rounds, W.C., Song, H.: The f-calculus: A language for distributed control of reconfigurable embedded systems. In: HSCC, LNCS, vol. 2623, pp. 435–449 (2003). DOI 10.1007/3-540-36580-X 32Google Scholar
  40. 113.
    Emerson, A.: Temporal and modal logic. In: J. van Leeuwen (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 995–1072. MIT Press (1990)Google Scholar
  41. 190.
    Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001). DOI 10.1006/jsco.2001.0472MATHCrossRefMathSciNetGoogle Scholar
  42. 95.
    Davoren, J.M.: On hybrid systems and the modal m-calculus. In: P.J. Antsaklis, W. Kohn, M.D. Lemmon, A. Nerode, S. Sastry (eds.) Hybrid Systems, LNCS, vol. 1567, pp. 38–69. Springer (1997). DOI 10.1007/3-540-49163-5 3Google Scholar
  43. 284.
    Stirling, C.: Modal and temporal logics. In: Handbook of Logic in Computer Science (vol. 2): Background: Computational Structures, pp. 477–563. Oxford University Press, Inc., New York, NY, USA (1992)Google Scholar
  44. 77.
    Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003). DOI 10.1142/S012905410300190XMATHCrossRefMathSciNetGoogle Scholar
  45. 182.
    Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443 (1997). DOI 10.1145/256167.256195CrossRefGoogle Scholar
  46. 22.
    Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: E. Brinksma, K.G. Larsen (eds.) CAV, LNCS, vol. 2404, pp. 365–370. Springer (2002). DOI 10.1007/3-540-45657-0 30Google Scholar
  47. 253.
    Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: FOCS, pp. 109–121. IEEE (1976)Google Scholar
  48. 15.
    Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: M.D.D. Benedetto, A.L. Sangiovanni-Vincentelli (eds.) HSCC, LNCS, vol. 2034, pp. 63–76. Springer (2001). DOI 10.1007/3-540-45351-2 9Google Scholar
  49. 97.
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7), 985–1010 (2000). DOI 10.1109/5.871305CrossRefGoogle Scholar
  50. 277.
    Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages? Tech. Rep. PRG-6, Oxford Programming Research Group (1971)Google Scholar
  51. 129.
    Galdino, A.L., Muñoz, C., Ayala-Rincón, M.: Formal verification of an optimal air traffic conflict resolution and recovery algorithm. In: D. Leivant, R. de Queiroz (eds.) WoLLIC, LNCS, vol. 4576, pp. 177–188. Springer (2007)Google Scholar
  52. 137.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Mon. hefte Math. Phys. 38, 173–198 (1931). DOI 10.1007/BF01700692CrossRefGoogle Scholar
  53. 158.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A model checker for hybrid systems. In: O. Grumberg (ed.) CAV, LNCS, vol. 1254, pp. 460–463. Springer (1997)Google Scholar
  54. 117.
    ERTMS User Group: ERTMS/ETCS System requirements specification. http://www.era.europa.eu (2002)
  55. 7.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Comput. 104(1), 2–34 (1993). DOI 10.1006/inco.1993.1024MATHCrossRefMathSciNetGoogle Scholar
  56. 196.
    Livadas, C., Lygeros, J., Lynch, N.A.: High-level modeling and analysis of TCAS. Proc. IEEE – Special Issue on Hybrid Systems: Theory & Applications 88(7), 926–947 (2000)Google Scholar
  57. 270.
    Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci. 290(1), 937–973 (2003)MATHCrossRefGoogle Scholar
  58. 223.
    Parker, R.S., Doyle, F.J., Peppas, N.A.: The intravenous route to blood glucose control. IEEE Engineering in Medicine and Biology 20(1), 65–73 (2001). DOI 10.1109/51.897829CrossRefGoogle Scholar
  59. 293.
    Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE T. Automat. Contr. 43(4), 509–521 (1998). DOI 10.1109/9.664154MATHCrossRefMathSciNetGoogle Scholar
  60. 218.
    Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and analysis of hybrid systems. In: Grossman et al. [144], pp. 149–178Google Scholar
  61. 13.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592– 601 (1993). DOI 10.1145/167088.167242Google Scholar
  62. 243.
    Platzer, A., Quesel, J.D.: Logical verification and systematic parametric analysis in train control. In: Egerstedt and Mishra [111], pp. 646–649. DOI 10.1007/978-3-540-78929-1 55Google Scholar
  63. 10.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994). DOI 10.1016/0304-3975(94)90010-8MATHCrossRefMathSciNetGoogle Scholar
  64. 156.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  65. 171.
    Hwang, I., Kim, J., Tomlin, C.: Protocol-based conflict resolution for air traffic control. Air Traffic Control Quarterly 15(1), 1–34 (2007)Google Scholar
  66. 66.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992). DOI 10.1016/ 0890-5401(92)90017-AMATHCrossRefMathSciNetGoogle Scholar
  67. 149.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)MATHGoogle Scholar
  68. 239.
    Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. In: Gupta and Malik [146], pp. 176–189. DOI 10.1007/978-3-540-70545-1 17Google Scholar
  69. 125.
    Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity of states. In: J. Flum, M. Rodr´ıguez-Artalejo (eds.) CSL, LNCS, vol. 1683, pp. 126–140. Springer (1999)Google Scholar
  70. 75.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: D. Kozen (ed.) Logic of Programs, LNCS, vol. 131, pp. 52–71. Springer (1981)Google Scholar
  71. 5.
    Alur, R.: Timed automata. In: N. Halbwachs, D. Peled (eds.) CAV, LNCS, vol. 1633, pp. 8–22. Springer (1999). DOI 10.1007/3-540-48683-6 3Google Scholar
  72. 148.
    Harel, D.: First-Order Dynamic Logic. Springer, New York (1979)MATHGoogle Scholar
  73. 64.
    Buehler, M.: Summary of DGC 2005 results. Journal of Field Robotics 23, 465–466 (2008). DOI 10.1002/rob.20145CrossRefGoogle Scholar
  74. 306.
    Zhou, C., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time systems. In: Grossman et al. [144], pp. 36–59Google Scholar
  75. 189.
    Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: F.W. Vaandrager, J.H. van Schuppen (eds.) HSCC, LNCS, vol. 1569, pp. 137–151. Springer (1999). DOI 10.1007/3-540-48983-5 15Google Scholar
  76. 65.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. In: Mitchell [210], pp. 428–439Google Scholar
  77. 81.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991). DOI 10.1016/S0747-7171(08)80152-6MATHCrossRefMathSciNetGoogle Scholar
  78. 147.
    Hähnle, R., Schmitt, P.H.: The liberalized d-rule in free variable semantic tableaux. J. Autom. Reasoning 13(2), 211–221 (1994). DOI 10.1007/BF00881956MATHCrossRefGoogle Scholar
  79. 174.
    Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. Logical Methods in Computer Science 3(4) (2007). DOI 10.2168/LMCS-3(4:1)2007Google Scholar
  80. 11.
    Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded systems. IEEE T. Software Eng. 22(3), 181–201 (1996)CrossRefGoogle Scholar
  81. 275.
    Schobbens, P.Y., Raskin, J.F., Henzinger, T.A.: Axioms for real-time logics. Theor. Comput. Sci. 274(1-2), 151–182 (2002). DOI 10.1016/S0304-3975(00)00308-XMATHCrossRefMathSciNetGoogle Scholar
  82. 9.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman et al. [144], pp. 209–229Google Scholar
  83. 122.
    Fitting, M.: First-Order Logic and Automated Theorem Proving, 2 edn. Springer, New York (1996)MATHGoogle Scholar
  84. 39.
    van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Deriving simulators for hybrid Chi models. Intelligent Control, 2006. IEEE International Symposium on pp. 42–49 (2006). DOI 10.1109/CACSD-CCA-ISIC.2006.4776622Google Scholar
  85. 221.
    Olderog, E.R., Dierks, H.: Real-Time Systems: Formal Specification and Automatic Verification. Cambridge Univ. Press (2008)MATHCrossRefGoogle Scholar
  86. 58.
    Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: Model and optimal control theory. IEEE T. Automat. Contr. 43(1), 31–45 (1998). DOI 10.1109/9. 654885MATHCrossRefMathSciNetGoogle Scholar
  87. 279.
    Sibirsky, K.S.: Introduction to Topological Dynamics. Noordhoff, Leyden (1975)Google Scholar
  88. 110.
    Egerstedt, M., Johansson, K.H., Sastry, S., Lygeros, J.: On the regularization of Zeno hybrid automata. Systems and Control Letters 38, 141–150 (1999)MATHCrossRefMathSciNetGoogle Scholar
  89. 166.
    Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: Design of platoon maneuver protocols for IVHS. PATH Research Report UCB-ITS-PRR-91-6, Institute of Transportation Studies, University of California, Berkeley (1991)Google Scholar
  90. 242.
    Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Armando et al. [18], pp. 171–178. DOI 10.1007/978-3-540-71070-7 15Google Scholar
  91. 162.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International (1985)Google Scholar
  92. 157.
    Henzinger, T.A., Ho, P.H.: HYTECH: The Cornell HYbrid TECHnology tools. In: P.J. Antsaklis, W. Kohn, A. Nerode, S. Sastry (eds.) Hybrid Systems, LNCS, vol. 999, pp. 265–293. Springer (1994)Google Scholar
  93. 170.
    Hutter, D., Langenstein, B., Sengler, C., Siekmann, J.H., Stephan, W., Wolpers, A.: Deduction in the verification support environment (VSE). In: M.C. Gaudel, J. Woodcock (eds.) FME, LNCS, vol. 1051, pp. 268–286. Springer (1996)Google Scholar
  94. 78.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge, MA, USA (1999)Google Scholar
  95. 100.
    Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: A formalism and a programming language for dynamic networks of hybrid automata. In: P.J. Antsaklis, W. Kohn, A. Nerode, S. Sastry (eds.) Hybrid Systems, LNCS, vol. 1273, pp. 113–133. Springer (1996). DOI 10.1007/BFb0031558Google Scholar
  96. 21.
    Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler and Pnueli [200], pp. 20–35. DOI 10.1007/3-540-36580-X 5Google Scholar
  97. 178.
    Kesten, Y., Manna, Z., Pnueli, A.: Verification of clocked and hybrid systems. Acta Inf. 36(11), 837–912 (2000). DOI 10.1007/s002360050177MATHCrossRefMathSciNetGoogle Scholar
  98. 114.
    Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)MATHCrossRefGoogle Scholar
  99. 159.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. In: LICS, pp. 394–406. IEEE Computer Society (1992). DOI 10.1006/inco.1994. 1045 408Google Scholar
  100. 1.
    Ábrahám-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems: Formalization and proof rules in PVS. In: Andler and Offutt [16], pp. 48–57. DOI 10.1109/ICECCS. 2001.930163Google Scholar
  101. 175.
    Jifeng, H.: From CSP to hybrid systems. In: A.W. Roscoe (ed.) A classical mind: essays in honour of C. A. R. Hoare, pp. 171–189. Prentice Hall, Hertfordshire, UK (1994)Google Scholar
  102. 291.
    Tiwari, A.: Approximate reachability for linear systems. In: Maler and Pnueli [200], pp. 514–525. DOI 10.1007/3-540-36580-X 37Google Scholar
  103. 35.
    Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software: The KeY Approach, LNCS, vol. 4334. Springer (2007). DOI 10.1007/978-3-540-69061-0Google Scholar
  104. 47.
    Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: R. Cleaveland (ed.) TACAS, LNCS, vol. 1579, pp. 193–207. Springer (1999). DOI 10.1007/ 3-540-49059-0 14Google Scholar
  105. 56.
    Branicky, M.S.: Studies in hybrid systems: Modeling, analysis, and control. Ph.D. thesis, Dept. Elec. Eng. and Computer Sci., Massachusetts Inst. Technol., Cambridge, MA (1995)Google Scholar
  106. 86.
    Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: J.C.M. Baeten, S. Mauw (eds.) CONCUR, LNCS, vol. 1664, pp. 242–257. Springer (1999). DOI 10.1007/ 3-540-48320-9 18Google Scholar
  107. 305.
    Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems. Monographs in Theoretical Computer Science. Springer (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations