On the Optimization of Bipartite Secret Sharing Schemes

  • Oriol Farràs
  • Jessica Ruth Metcalf-Burton
  • Carles Padró
  • Leonor Vázquez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5973)


Bipartite secret sharing schemes are those having a bipartite access structure, that is, the set of participants is divided into two parts, and all participants in each part play an equivalent role. The bipartite access structures that admit an ideal secret sharing scheme have been characterized, but it is not known which is the optimal complexity of non-ideal bipartite access structures. By using the connection between secret sharing schemes and polymatroids, we find new bounds on the optimal complexity of these acess structures and, for some of them, we find the exact value of this parameter. Some of these bounds are obtained by using a method based on linear programming.


Cryptography secret sharing multipartite secret sharing polymatroids linear programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beimel, A., Ishai, Y.: On the power of nonlinear secret sharing schemes. SIAM J. Discrete Math. 19, 258–280 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beimel, A., Livne, N.: On Matroids and Non-ideal Secret Sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 482–501. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Beimel, A., Livne, N., Padró, C.: Matroids Can Be Far From Ideal Secret Sharing. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 194–212. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Beimel, A., Orlov, I.: Secret Sharing and Non-Shannon Information Inequalities. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 539–557. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Beimel, A., Tassa, T., Weinreb, E.: Characterizing Ideal Weighted Threshold Secret Sharing. SIAM J. Discrete Math. 22, 360–397 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Beimel, A., Weinreb, E.: Separating the power of monotone span programs over different fields. SIAM J. Comput. 34, 1196–1215 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Beimel, A., Weinreb, E.: Monotone Circuits for Monotone Weighted Threshold Functions. Information Processing Letters 97, 12–18 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceedings, vol. 48, pp. 313–317 (1979)Google Scholar
  9. 9.
    Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: Tight Bounds on the Information Rate of Secret Sharing Schemes. Des. Codes Cryptogr. 11, 107–122 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Math. and Combin. Comput. 9, 105–113 (1989)MathSciNetGoogle Scholar
  11. 11.
    Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptology 4, 123–134 (1991)zbMATHGoogle Scholar
  12. 12.
    Csirmaz, L.: The size of a share must be large. J. Cryptology 10, 223–231 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    L. Csirmaz, G. Tardos. Secret sharing on trees: problem solved (preprint) (2009), Cryptology ePrint Archive,
  14. 14.
    Farràs, O., Martí–Farré, J., Padró, C.: Ideal Multipartite Secret Sharing Schemes. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 448–465. Springer, Heidelberg (2007); The full version of this paper is available at the Cryptology ePrint Archive, CrossRefGoogle Scholar
  15. 15.
    Farràs, O., Padró, C.: Ideal Hierarchical Secret Sharing Schemes. Cryptology ePrint Archive, Report 2009/141,
  16. 16.
    Fehr, S.: Efficient Construction of the Dual Span Program (manuscript)Google Scholar
  17. 17.
    Fujishige, S.: Polymatroidal Dependence Structure of a Set of Random Variables. Information and Control 39, 55–72 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Herranz, J., Sáez, G.: New Results on Multipartite Access Structures. IEEE Proceedings on Information Security 153, 153–162 (2006)CrossRefGoogle Scholar
  19. 19.
    Herzog, J., Hibi, T.: Discrete polymatroids. J. Algebraic Combin. 16, 239–268 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing any access structure. In: Proc. IEEE Globecom 1987, pp. 99–102 (1987)Google Scholar
  21. 21.
    Jackson, W.-A., Martin, K.M.: Geometric secret sharing schemes and their duals. Des. Codes Cryptogr. 4, 83–95 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Martí-Farré, J., Padró, C.: On Secret Sharing Schemes, Matroids and Polymatroids. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 273–290. Springer, Heidelberg (2007); The full version of this paper is available at the Cryptology ePrint Archive, CrossRefGoogle Scholar
  23. 23.
    Matúš, F.: Matroid representations by partitions. Discrete Math. 203, 169–194 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Matúš, F.: Adhesivity of polymatroids. Discrete Math. 307, 2464–2477 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Metcalf-Burton, J.R.: Information Rates of Minimal Non-Matroid-Related Access Structures. Scholar
  26. 26.
    Morillo, P., Padró, C., Sáez, G., Villar, J.L.: Weighted Threshold Secret Sharing Schemes. Inf. Process. Lett. 70, 211–216 (1999)zbMATHCrossRefGoogle Scholar
  27. 27.
    Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inform. Theory 46, 2596–2604 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Shamir, A.: How to share a secret. Commun. of the ACM 22, 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Shannon, C.E.: A Mathematical Theory of Communication. Bell. Sys. Tech. Journal 27 (1948)Google Scholar
  30. 30.
    Simmons, G.J.: How to (Really) Share a Secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, Heidelberg (1990)Google Scholar
  31. 31.
    Stinson, D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2, 357–390 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Stinson, D.R.: Decomposition constructions for secret-sharing schemes. IEEE Transactions on Information Theory 40, 118–125 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)zbMATHGoogle Scholar
  34. 34.
    Yeung, R.W.: A framework for linear information inequalities. IEEE Trans. Inform. Theory IT-41, 412–422 (1995)CrossRefGoogle Scholar
  35. 35.
    Yeung, R.W.: A First Course in Information Theory. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Oriol Farràs
    • 1
  • Jessica Ruth Metcalf-Burton
    • 2
  • Carles Padró
    • 1
  • Leonor Vázquez
    • 1
  1. 1.Dep. de Matemàtica Aplicada 4Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Mathematics DepartmentUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations