Skip to main content

A Lower Bound on the Key Length of Information-Theoretic Forward-Secure Storage Schemes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5973))

Abstract

Forward-Secure Storage (FSS) was introduced by Dziembowski (CRYPTO 2006). Informally, FSS is an encryption scheme (Encr, Decr) that has the following non-standard property: even if the adversary learns the value of some function h of the ciphertext C = Encr(K,M), he should have essentially no information on the corresponding plaintext M, even if he knows the key K. The only restriction is that h is input-shrinking, i.e. |h(R)| ≤ σ, where σ is some parameter such that σ ≤ |C|.

We study the problem of minimizing the length of the secret key in the IT-secure FSS, and we establish an almost optimal lower bound on the length of the secret key. The secret key of the FSS scheme of Dziembowski has length |M| + O(logσ). We show that in every FSS the secret key needs to have length at least |M| + log2 σ − O(log2 log2 σ).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

    Google Scholar 

  2. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-resilient key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Dziembowski, S.: On forward-secure storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Dziembowski, S., Maurer, U.M.: On generating the initial key in the bounded-storage model. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 126–137. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: FOCS, pp. 227–237 (2007)

    Google Scholar 

  8. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, Philadelphia, PA, USA, October 25-28, pp. 293–302. IEEE Computer Society, Los Alamitos (2008)

    Chapter  Google Scholar 

  9. Halevi, S., Rabin, T. (eds.): TCC 2006. LNCS, vol. 3876. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  10. Alwen, Y.D.J., Wichs, D.: Leakage resilient public-key cryptography in the bounded retrieval model. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Katz, J.: Signature schemes with bounded leakage resilience. Cryptology ePrint Archive, Report 2009/220 (2009), http://eprint.iacr.org/

  12. Lu, C.-J.: Encryption against storage-bounded adversaries from on-line strong extractors. J. Cryptology 17(1), 27–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized cipher. J. Cryptology 5(1), 53–66 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin of the EATCS 77, 67–95 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in the bounded-storage model. J. Cryptology 17(1), 43–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dziembowski, S. (2010). A Lower Bound on the Key Length of Information-Theoretic Forward-Secure Storage Schemes. In: Kurosawa, K. (eds) Information Theoretic Security. ICITS 2009. Lecture Notes in Computer Science, vol 5973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14496-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14496-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14495-0

  • Online ISBN: 978-3-642-14496-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics