Information Theoretic Security Based on Bounded Observability

  • Jun Muramatsu
  • Kazuyuki Yoshimura
  • Peter Davis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5973)


Under the condition that all users can observe a common object, each using an observation function independently chosen from the same limited set of observation functions, we show necessary and sufficient conditions for users to be able to generate secret keys by public discussion.


Bounded observability bounded storage model information theoretic security satellite scenario secret key agreement by public discussion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Transactions on Information Theory IT-39(3), 733–742 (1993)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chachin, C., Maurer, U.M.: Unconditional security against memory-bounded adversaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Aumann, Y., Ding, Y.Z., Rabin, M.O.: Everlasting security in the bounded storage model. IEEE Transactions on Information Theory IT-48(6), 1668–1680 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)Google Scholar
  5. 5.
    Maurer, U.M., Wolf, S.: Unconditionally secure key agreement and the intrinsic conditional information. IEEE Transactions on Information Theory IT-45(2), 499–514 (1999)CrossRefMathSciNetGoogle Scholar
  6. 6.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)MATHGoogle Scholar
  7. 7.
    Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Transactions on Information Theory IT-41(6), 1915–1923 (1995)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Muramatsu, J., Yoshimura, K., Davis, P.: Secret key capacity and advantage distillation capacity. IEICE Transactions on Fundamentals E89-A(10), 2589–2596 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jun Muramatsu
    • 1
  • Kazuyuki Yoshimura
    • 1
  • Peter Davis
    • 1
  1. 1.NTT Communication Science LaboratoriesNTT CorporationKyotoJapan

Personalised recommendations