Biosurfactants pp 145-177

Part of the Microbiology Monographs book series (MICROMONO, volume 20) | Cite as

Mannosylerythritol Lipids: Microbial Production and Their Applications

Chapter

Abstract

Mannosylerythritol lipids (MELs) are surface-active compounds synthesized by yeast strains of the genus Pseudozyma sp. or Ustilago sp., from soybean oil or n-alkane (over 100g/L). The former strain produces it as the major while the latter as the minor component. They belong to the class of glycolipids. Although MELs have been known for more than five decades, they recently regained attention due to their environmental compatibility, mild production conditions, structural diversity, self-assembling properties, versatile biochemical functions, and high yield when compared to other biosurfactants. In this chapter, structural diversity of MELs, genetic diversity of MEL producers, various fermentation conditions, downstream steps involved in their separation, factors affecting the amount and type of MEL produced, and self-assembling properties and their applications are discussed. The biosynthetic pathways and the genetic regulation of the MEL production are also included.

References

  1. Aparicio JF, Caffrey P, Gil JA, Zotchev SB (2003) Polyene antibiotic biosynthesis gene clusters. Appl Microbiol Biotechnol 61:179–188PubMedGoogle Scholar
  2. Bhattacharjee SS, Haskins RH, Gorin PAJ (1970) Location of acyl groups on two partly acylated glycolipids from strains of Ustilago (smut fungi). Carbohydr Res 13:235–246CrossRefGoogle Scholar
  3. Boothroyd B, Thorn JA, Haskins RH (1956) Biochemistry of the ustilaginales. XII. characterization of extracellular glycolipids produced by Ustilago sp. Can J Biochem Physiol 34:10–14PubMedCrossRefGoogle Scholar
  4. Deml G, Anke T, Oberwinkler F, Gianetti BM, Steglich W (1980) Schizonellin A and B, new glycolipids from Schizonella melanogramma. Phytochemistry 19:83–87CrossRefGoogle Scholar
  5. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedGoogle Scholar
  6. Dobereiner HG (2000) Properties of giant vesicles. Curr Opin Colloid Interface Sci 5:256–263CrossRefGoogle Scholar
  7. Fluharty AL, O’Brien JS (1969) A mannose- and erythritol-containing glycolipid from Ustilago maydis. Biochemistry 8:2627–2632PubMedCrossRefGoogle Scholar
  8. Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2007a) Characterization of new types of mannosylerythritol lipids as biosurfactant produced from soybean oil by a Basidiomycetous yeast, Pseudozyma shanxiensis. J Oleo Sci 56:435–442PubMedCrossRefGoogle Scholar
  9. Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2007b) Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts. Biotechnol Lett 29:1111–1118PubMedCrossRefGoogle Scholar
  10. Fukuoka T, Morita T, Konishi M, Imura T, Sakai H, Kitamoto D (2007c) Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Appl Microbiol Biotechnol 76:801–810PubMedCrossRefGoogle Scholar
  11. Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2008) A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydr Res 343:555–560PubMedCrossRefGoogle Scholar
  12. Greenspan P, Fowler SD (1985) Spectrofluorometric studies of lipid probe, Nile red. J Lipid Res 26:781–789PubMedGoogle Scholar
  13. Hamme JDV, Singh A, Ward OP (2006) Physiological aspects Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620PubMedCrossRefGoogle Scholar
  14. Haskins RH, Thorn JA, Boothroyd B (1955) Biochemistry of the ustilagenales. XI. Metabolic products of Ustilago zeae in submerged culture. Can J Microbiol 1:749–756PubMedCrossRefGoogle Scholar
  15. Hewald S, Josephs K, Bolker M (2005) Genetic analysis of Biosurfactant production in Ustilago maydis. Appl Environ Microbiol 71:3033–3040PubMedCrossRefGoogle Scholar
  16. Hewald S, Linne U, Schere M, Marahiel MA, Kamper J, Bolker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72:5469–5477PubMedCrossRefGoogle Scholar
  17. Im JH, Nakane T, Yanagishita H, Ikegami T, Kitamoto D (2001) Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G. BMC Biotechnol 1:5PubMedCrossRefGoogle Scholar
  18. Im JH, Yanagishita H, Ikegami T, Takeyama Y, Idemoto Y, Koura N, Kitamoto D (2003) Mannosylerythritol lipids, yeast glycolipid biosurfactants, are potential affinity ligand materials for human immunoglobulin G. J Biomed Mater Res 65A:379–385CrossRefGoogle Scholar
  19. Imura T, Yanagishita H, Kitamoto D (2004) Coacervate formation from natural glycolipid: one acetyl group on the headgroup triggers coacervate-to-vesicle transition. J Am Chem Soc 126:10804–10805PubMedCrossRefGoogle Scholar
  20. Imura T, Yanagishita H, Ohira J, Sakai H, Abeb M, Kitamoto D (2005) Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase. Colloids Surf B Biointerfaces 43:115–121PubMedCrossRefGoogle Scholar
  21. Imura T, Ohta N, Inoue K, Yagi N, Negishi H, Yanagishita H, Kitamoto D (2006) Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures. Chem Eur J 12:2434–2440PubMedCrossRefGoogle Scholar
  22. Imura T, Hikosaka Y, Worakitkanchanakul W, Sakai H, Abe M, Konishi M, Minamikawa H, Kitamoto D (2007a) Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases. Langmuir 23:1659–1663PubMedCrossRefGoogle Scholar
  23. Imura T, Ito S, Azumi R, Yanagishita H, Sakai H, Abe M, Kitamoto D (2007b) Monolayers assembled from a glycolipid biosurfactant from Pseudozyma (Candida) antarctica serve as a high-affinity ligand system for immunoglobulin G and M. Biotechnol Lett 29:865–870PubMedCrossRefGoogle Scholar
  24. Inaba H (2000) New challenge in advanced thermal energy transportation using functionally thermal fluids. Int J Therm Sci 39:991–1003CrossRefGoogle Scholar
  25. Inoh Y, Kitamoto D, Hirashima N, Nakanishi M (2001) Biosurfactants of MEL-A increase gene transfection mediated by cationic liposomes. Biochem Biophys Res Commun 289:57–61PubMedCrossRefGoogle Scholar
  26. Inoh Y, Kitamoto D, Hirashima N, Nakanishi M (2004) Biosurfactant MEL-A dramatically increases gene transfection via membrane fusion. J Control Release 94:423–431PubMedCrossRefGoogle Scholar
  27. Isoda H, Nakahara T (1997) Mannosylerythritol lipid induces granulocytic differentiation and inhibits the tyrosine phosphorylation of human myelogenous leukemia cell line K562. Cytotechnology 25:191–195PubMedCrossRefGoogle Scholar
  28. Isoda H, Kitamoto D, Shinmoto H, Matsumura M, Nakahara T (1997a) Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Biosci Biotechnol Biochem 61:609–614PubMedCrossRefGoogle Scholar
  29. Isoda H, Shinmoto H, Kitamoto D, Matsumura M, Nakahara T (1997b) Differentiation of human promyelocytic leukemia cell line HL60 by microbial extracellular glycolipids. Lipids 32:263–271PubMedCrossRefGoogle Scholar
  30. Kakugawa K, Tamai M, Imamura K, Miyamoto K, Miyoshi S, Morinaga Y (2002) Isolation of yeast Kurtzmanomyces sp. I-11, novel producer of mannosylerythritol lipid. Biosci Biotechnol Biochem 66:188–191PubMedCrossRefGoogle Scholar
  31. Kawashima H, Nakahara T, Oogaki M, Tabuchi T (1983) Extracellular production of a mannosylerythritol lipid by a mutant of Candida sp. from n-alkanes and triacylglycerols. J Ferment Technol 61:143–149Google Scholar
  32. Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590PubMedCrossRefGoogle Scholar
  33. Kim H-S, Yoon BD, Choung DH, Oh HM, Katsuragi T, Tani Y (1999) Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp SY16. Appl Microbiol Biotechnol 52:713–721PubMedCrossRefGoogle Scholar
  34. Kim H-S, Jeon J-W, Kim B-H, Ahn C-Y, Oh H-M, Yoon B-D (2006) Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl Microbiol Biotechnol 70:391–396PubMedCrossRefGoogle Scholar
  35. Kitamoto D, Akiba S, Hioki C, Tabuchi T (1990a) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric Biol Chem 54:31–36CrossRefGoogle Scholar
  36. Kitamoto D, Haneishi K, Nakahara T, Tabuchi T (1990b) Production of mannosylerythritol lipids by Candida antarctica from vegetable oils. Agric Biol Chem 54:37–40CrossRefGoogle Scholar
  37. Kitamoto D, Fuzishiro T, Yanagishita H, Nakane T, Nakahara T (1992) Production of mannosylerythritol lipids as biosurfactants by resting cells of Candida antarctica. Biotechnol Lett 14:305–310CrossRefGoogle Scholar
  38. Kitamoto D, Nemoto T, Yanagishita H, Nakane T, Kitamoto H, Nakahara T (1993a) Fatty acid metabolism of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Jpn Oil Chem Soc 42:346–358CrossRefGoogle Scholar
  39. Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993b) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29:91–96CrossRefGoogle Scholar
  40. Kitamoto D, Yanagishita H, Hayara K, Kitamoto HK (1998) Contribution of a chain-shortening pathway to the biosynthesis of the fatty acids of mannosyierythritol lipid (biosurfactant) in the yeast Candida antarctica: effect of β-oxidation inhibitors on biosurfactant synthesis. Biotechnol Lett 20:813–818CrossRefGoogle Scholar
  41. Kitamoto D, Ghosh SGO, Nakatani Y (2000) Formation of giant vesicle from diacylmannosylerythritols and their binding to concanavalin A. Chem Commun 2000:861–862CrossRefGoogle Scholar
  42. Kitamoto D, Ikegami T, Suzuki GT, Sasaki A, Takeyama Y, Idemoto Y, Koura N, Yanagishita H (2001a) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol Lett 23:1709–1714CrossRefGoogle Scholar
  43. Kitamoto D, Yanagishita H, Endo A, Nakaiwa M, Nakane M, Akiya T (2001b) Remarkable antiagglomeration effect of a yeast biosurfactant, diacylmannosylerythritol, on ice-water slurry for cold thermal storage. Biotechnol Prog 17:362–365PubMedCrossRefGoogle Scholar
  44. Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants-from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201PubMedGoogle Scholar
  45. Kitamoto D (2008) Naturally engineered glycolipid biosurfactants leading to distinctive self-assembling properties. Yakugaku Zasshi 128:695–706PubMedCrossRefGoogle Scholar
  46. Kitamoto D, Morita T, Fukuoka T, Konishi M, Imura T (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci 14:315–328CrossRefGoogle Scholar
  47. Konishi M, Imura T, Fukuoka T, Morita T, Kitamoto D (2007a) A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system. Biotechnol Lett 29:473–480PubMedCrossRefGoogle Scholar
  48. Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2007b) Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl Microbiol Biotechnol 75:521–531PubMedCrossRefGoogle Scholar
  49. Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2008) Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Appl Microbiol Biotechnol 78:37–46PubMedCrossRefGoogle Scholar
  50. Kurz M, Eder C, Isert D, Li Z, Paulus EF, Schiell M, Toti L, Vertesy L, Wink J, Seibert G (2003) Ustilipids, acylated β-D-mannopyranosyl-D-erythritols from Ustilago maydis and Geotrichum candidum. J Antibiot (Tokyo) 56:91–101CrossRefGoogle Scholar
  51. Lin SC (1996) Biosurfactant: recent advances. J Chem Technol Biotechnol 63:109–120CrossRefGoogle Scholar
  52. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2006a) Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast, Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids. Yeast 23:661–671PubMedCrossRefGoogle Scholar
  53. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2006b) Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Appl Microbiol Biotechnol 73:305–313PubMedCrossRefGoogle Scholar
  54. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto HK, Kitamoto D (2007) Characterization of the genus Pseudozyma by the formation of glycolipid biosurfactants, mannosylerythritol lipids. FEMS Yeast Res 7:286–292PubMedCrossRefGoogle Scholar
  55. Morita T, Konishi M, Fukuoka T, Imura T, Yamamoto S, Kitagawa M, Sogabe A, Kitamoto D (2008a) Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Oleo Sci 57:123–131PubMedCrossRefGoogle Scholar
  56. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2008b) Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. J Biosci Bioeng 105:493–502PubMedCrossRefGoogle Scholar
  57. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2008c) Identification of Ustilago cynodontis as a new producers of glycolipid biosurfactants, mannosylerythritol lipids, based on ribosomal DNA sequence. J Oleo Sci 57:549–556PubMedCrossRefGoogle Scholar
  58. Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2009a) Production of glycolipid biosurfactants, mannosylerythritol lipids, by smut fungus, Ustilago scitaminea NBRC 32730. Biosci Biotechnol Biochem 73:788–792PubMedCrossRefGoogle Scholar
  59. Morita T, FukuokaT KM, Imura T, Yamamoto S, Kitagawa M, Sogabe A, Kitamoto D (2009b) Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties. Appl Microbiol Biotechnol 83:1017–1025PubMedCrossRefGoogle Scholar
  60. Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2009c) Production of glycolipid biosurfactants, mannosylerythritol lipids, using sucrose by fungal and yeast strains, and their interfacial properties. Biosci Biotechnol Biochem 73:2352–2355PubMedCrossRefGoogle Scholar
  61. Morita T, Kitagawa M, Suzuki M, Yamamoto S, Sogabe A, Yanagidani S, Imura T, Fukuoka T, Kitamoto D (2009d) A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows potential moisturizing activity toward cultured human skin cells: the recovery effect of MEL-A on the SDS-damaged human skin cells. J Oleo Sci 58:639–642PubMedCrossRefGoogle Scholar
  62. Mulligan CN (2004) Environmental applications for biosurfactants. Environ Pollut 133:183–198CrossRefGoogle Scholar
  63. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166PubMedGoogle Scholar
  64. Rau U, Nguyen LA, Schulz S, Wray V, Nimtz M, Roeper H, Koch H, Lang S (2005a) Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 66:551–5593PubMedCrossRefGoogle Scholar
  65. Rau U, Nguyen LA, Roeper H, Koch H, Lang S (2005b) Fed-batch bioreactor production of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 68:607–613PubMedCrossRefGoogle Scholar
  66. Rau U, Nguyen LA, Roeper H, Koch H, Lang S (2005c) Downstream processing of mannosylerythritol lipids produced by Pseudozyma aphidis. Eur J Lipid Sci Technol 107:373–380CrossRefGoogle Scholar
  67. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618PubMedCrossRefGoogle Scholar
  68. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236PubMedCrossRefGoogle Scholar
  69. Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162PubMedCrossRefGoogle Scholar
  70. Shibahara M, Zhao X, Wakamatsu Y, Nomura N, Nakahara T, Jin C, Nagaso H, Murata T, Yokoyama KK (2000) Mannosylerythritol lipid increases levels of galactoceramide in and neurite outgrowth from PC12 pheochromocytoma cells. Cytotechnology 33:247–251PubMedCrossRefGoogle Scholar
  71. Spoeckner S, Wray V, Nimtz M, Lang S (1999) Glycolipids of the smut fungus Ustilago maydis from cultivation on renewable resources. Appl Microbiol Biotechnol 51:33–39CrossRefGoogle Scholar
  72. Sugita T, Takashima M, Poonwan N, Mekha N, Malaithao K, Thungmuthawawat B, Pransarn S, Luangsook P, Kudo T (2003) The first isolation of ustilaginomycetous anamorphic yeasts, Pseudozyma species, from patients’ blood and a description of two new species: P. parantarctica and P. thailandica. Microbiol Immunol 47:183–190PubMedGoogle Scholar
  73. Tanaka A, Fukui S (1989) Metabolism of n-alkane. In: Rose AH, Harrison JS (ed) The yeasts, metabolism and physiology of yeasts, Vol 3. Academic Press, London, New York, pp 261–287Google Scholar
  74. Ueno Y, Hirashima N, Inoh Y, Furuno T, Nakanishi M (2007a) Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection. Biol Pharm Bull 30:169–1723PubMedCrossRefGoogle Scholar
  75. Ueno Y, Inoh Y, Furuno T, Hirashima N, Kitamoto D, Nakanishi M (2007b) NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection. J Control Release 123:247–253PubMedCrossRefGoogle Scholar
  76. Vejux A, Kahn E, Dumas D, Besséde G, Ménétrier F, Athias A, Riedinger JM, Frouin F, Stoltz JF, Ogier-Denis E, Todd-Pokropek A, Lizard G (2005) 7-Ketocholesterol favors lipid accumulation and colocalizes with Nile red positive cytoplasmic structures formed during 7-ketocholesterol-induced apoptosis: analysis by flow cytometry, FRET biphoton spectral imaging microscopy, and subcellular fractionation. Cytom A 64A:87–100CrossRefGoogle Scholar
  77. Vertesy L, Kurz M, Wink J, Noelken G (2002) Ustilipides, method for the production and the use thereof. US Patent 6,472,158Google Scholar
  78. Wakamatsu Y, Zhao X, Jin C, Day N, Shibahara M, Nomura N, Nakahara T, Murata T, Yokoyama KK (2001) Mannosylerythritol lipid induces characteristics of neuronal differentiation in PC12 cells through an ERK-related signal cascade. Eur J Biochem 268:374–383PubMedCrossRefGoogle Scholar
  79. Wander RJA, Vreken P, Ferdiandusse S, Jansen GA, Waterham HR, van Roermunde CWT, Grunsven EGV (2001) Peroxisomal fatty acid α- and β-oxidation in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases. Biochem Soc Trans 29:250–267CrossRefGoogle Scholar
  80. Worakitkanchanakul W, Imura T, Fukuoka T, Morita T, Sakai H, Abe M, Rujiravanit R, Chavadej S, Minamikawa H, Kitamoto D (2008) Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids Surf B Biointerfaces 65:106–112PubMedCrossRefGoogle Scholar
  81. Worakitkanchanakul W, Imura T, Fukuoka T, Morita T, Sakai H, Abe M, Rujiravanit R, Chavadej S, Minamikawa H, Kitamoto D (2009) Phase behavior of ternary mannosylerythritol lipid/water/oil systems. Colloids Surf B Biointerfaces 68:207–212Google Scholar
  82. Zhao X, Wakamatsu Y, Shibahara M, Nomura N, Geltinger C, Nakahara T, Murata T, Yokoyama KK (1999) Mannosylerythritol lipid is a potent inducer of apoptosis and differentiation of mouse melanoma cells in culture. Cancer Res 59:482–486PubMedGoogle Scholar
  83. Zhao X, Geltinger X, Kishikawa S, Ohshima S, Murata S, Nomura N, Nakahara T, Yokoyama KK (2000) Treatment of mouse melanoma cells with phorbol 12-myristate 13-acetate counteracts mannosylerythritollipid-induced growth arrest and apoptosis. Cytotechnology 33:123–130PubMedCrossRefGoogle Scholar
  84. Zhao X, Murata T, Ohno S, Day N, Song J, Nomura N, Nakahara T, Yokoyama KK (2001) Protein kinase Cα plays a critical role in mannosylerythritol lipid induced differentiation of melanoma B16 Cells. J Biol Chem 276:39903–39910PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations