Serrawettins and Other Surfactants Produced by Serratia

  • Tohey MatsuyamaEmail author
  • Taichiro Tanikawa
  • Yoji Nakagawa
Part of the Microbiology Monographs book series (MICROMONO, volume 20)


Serrawettins are nonionic biosurfactants produced by Serratia marcescens. Three molecular species, serrawettin W1, cyclo(d-3-hydroxydecanoyl-l-seryl)2; W2, d-3-hydroxydecanoyl-d-leucyl-l-seryl-l-threonyl-d-phenylalanyl-l-isoleucyl lactone; and W3, cyclodepsipeptide composed of five amino acids and one dodecanoic acid, have been reported. Serratia rubidaea produces rubiwettin R1, linked d-3-hydroxy fatty acids and RG1, β-glucopyranosyl linked d-3-hydroxy fatty acids. These biosurfactants are produced mainly at 30°C, but not at 37°C, and secreted through extracellular vesicles on solid media. The contribution of the biosurfactants to spreading growth in surface environments has been determined, and it is prominent under nutrient-poor conditions. Analyses of S. marcescens mutants revealed the involvement of three novel genes for serrawettin W1 production. The gene pswP encodes a phosphopantetheinyl transferase group enzyme, swrW encodes a unimodular synthetase belonging to the nonribosomal peptide synthetase (NRPS) family, and hexS encodes a LysR-type transcriptional regulator working as a downregulator of Serratia exolipids and some exoenzymes. Autoinducer-dependent serrawettin W2 production has been elucidated by the finding of SwrI/SwrR (homolog of LuxI/LuxR) and N-acyl homoserine lactones in the study on quorum-sensing controlled-swarming of S. marcescens.


Acyl Carrier Protein Extracellular Vesicle Nonribosomal Peptide Synthetase Bacterial Mass Wetting Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are indebted to all their coworkers at Niigata University and Chuo University. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan, and by a grant from the Urakami Foundation.


  1. Akit J, Cooper DG, Manninen KI, Zajic JE (1981) Investigation of potential biosurfactant production among phytopathogenic corynebacteria and related soil microbes. Curr Microbiol 6:145–150CrossRefGoogle Scholar
  2. Alberti L, Harshey RM (1990) Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J Bacteriol 172:4322–4328PubMedGoogle Scholar
  3. Allison C, Hughes C (1991) Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog 75:403–422PubMedGoogle Scholar
  4. Bar-Ness R, Avrahamy N, Matsuyama T, Rosenberg M (1988) Increased cell surface hydrophobicity of a Serratia marcescens NS 38 mutant lacking wetting activity. J Bacteriol 170:4361–4364PubMedGoogle Scholar
  5. Ben-Jacob E, Shochet O, Tenenbaum A, Cohen L, Czirók A, Vicsek T (1994) Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368:46–49PubMedCrossRefGoogle Scholar
  6. Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J Biol Chem 238:2595–2602PubMedGoogle Scholar
  7. Calfee MW, Shelton JG, McCubrey JA, Pesci EC (2005) Solubility and bioactivity of the Pseudomonas quinolone signal are increased by a Pseudomonas aeruginosa-produced surfactant. Infect Immun 73:878–882PubMedCrossRefGoogle Scholar
  8. Cartwright NJ (1955) Serratamic acid, a derivative of L-serine produced by organisms of the Serratia group. Biochem J 60:238–242PubMedGoogle Scholar
  9. Chen BG, Turner L, Berg HC (2007) The wetting agent for swarming in Salmonella enterica serovar Typhimurium is not a surfactant. J Bacteriol 189:8750–8753PubMedCrossRefGoogle Scholar
  10. Cosmina P, Rodriguez F, de Ferra F, Grandi G, Perego M, Venema G, van Sinderen D (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:821–831PubMedCrossRefGoogle Scholar
  11. Costerton JW, Lewandowski Z (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745PubMedCrossRefGoogle Scholar
  12. Coulthurst SJ, Kurz CL, Salmond GPC (2004) luxS mutants of Serratia defective in autoinducer-2-dependent ‘quorum sensing’ show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology 150:1901–1910PubMedCrossRefGoogle Scholar
  13. Coulthurst SJ, Williamson NR, Harris AK, Spring DR, Salmond GPC (2006) Metabolic and regulatory engineering of Serratia marcescens: mimicking phage-mediated horizontal acquisition of antibiotic biosynthesis and quorum-sensing capacities. Microbiology 152:1899–1911PubMedCrossRefGoogle Scholar
  14. Das P, Mukherjee S, Sen R (2008) Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Genet Eng Rev 25:165–186PubMedCrossRefGoogle Scholar
  15. Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013PubMedCrossRefGoogle Scholar
  16. Eberl L, Winson MK, Sternberg C, Stewart GSAB, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M (1996) Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20:127–136PubMedCrossRefGoogle Scholar
  17. Escobar-Díaz E, López-Martín EM, Hernández del Cerro M, Puig-Kroger A, Soto-Cerrato V, Montaner B, Giralt E, García-Marco JA, Pérez-Tomás R, Garcia-Pardo A (2005) AT514, a cyclic depsipeptide from Serratia marcescens, induces apoptosis of B-chronic lymphocytic leukemia cells: interference with the Akt/NF-κB survival pathway. Leukemia 19:572–579PubMedGoogle Scholar
  18. Givskov M, Eberl L, Molin S (1997) Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiol Lett 148:115–122CrossRefGoogle Scholar
  19. Guenzi E, Galli G, Grgurina I, Gross DC, Grandi G (1998) Characterization of the syringomycin synthetase gene cluster. J Biol Chem 273:32857–32863PubMedCrossRefGoogle Scholar
  20. Harris AKP, Williamson NR, Slater H, Cox A, Abbasi S, Foulds I, Simonsen HT, Leeper FJ, Salmond GPC (2004) The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150:3547–3560PubMedCrossRefGoogle Scholar
  21. Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273PubMedCrossRefGoogle Scholar
  22. Harshey RM, Matsuyama T (1994) Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci USA 91:8631–8635PubMedCrossRefGoogle Scholar
  23. Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Cámara M, Williams P, Haas D (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945PubMedCrossRefGoogle Scholar
  24. Hisatsuka KI, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem 35:686–692CrossRefGoogle Scholar
  25. Iliev B, Linden A, Kunz R, Heimgartner H (2006) 14-Membered cyclodepsipeptides with alternating β-hydroxy and α-amino acids by cyclodimerization. Tetrahedron 62:1079–1094CrossRefGoogle Scholar
  26. Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Meth 13:271–279CrossRefGoogle Scholar
  27. Köhler T, Curty LK, Barja F (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996PubMedCrossRefGoogle Scholar
  28. Li H, Tanikawa T, Sato Y, Nakagawa Y, Matsuyama T (2005) Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol 49:303–310PubMedGoogle Scholar
  29. Lindum PW, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M (1998) N-acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:6384–6388PubMedGoogle Scholar
  30. Mack GL (1936) The determination of contact angles from measurements of the dimensions of small bubbles and drops. I. The spheroidal segment method for acute angles. J Phys Chem 40:159–167CrossRefGoogle Scholar
  31. Mandelbrot BB (1983) The fractal geometry of nature. WH Freeman, New YorkGoogle Scholar
  32. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674PubMedCrossRefGoogle Scholar
  33. Matsushita M (1997) Formation of colony patterns by a bacterial cell population. In: Shapiro JM, Dworkin M (eds) Bacteria as multicellular organisms. Oxford University Press, New York, pp 366–393Google Scholar
  34. Matsushita M, Fujikawa H (1990) Diffusion-limited growth in bacterial colony formation. Physica A 168:498–506CrossRefGoogle Scholar
  35. Matsuyama T (1993) Wetting activity and fractal colony growth by bacteria. Surface 31:114–124 (in Japanese)Google Scholar
  36. Matsuyama T, Matsushita M (1992) Self-similar colony morphogenesis by gram-negative rods as the experimental model of fractal growth by a cell population. Appl Environ Microbiol 58:1227–1232PubMedGoogle Scholar
  37. Matsuyama T, Matsushita M (1993) Fractal morphogenesis by a bacterial cell population. Crit Rev Microbiol 19:117–135PubMedCrossRefGoogle Scholar
  38. Matsuyama T, Matsushita M (1996) Morphogenesis by bacterial cells. In: Iannaccone PM, Khokha M (eds) Fractal geometry in biological systems – an analytical approach. CRC Press, Boca Raton, pp 127–171Google Scholar
  39. Matsuyama T, Nakagawa Y (1996a) Bacterial wetting agents working in colonization of bacteria on surface environments. Colloids Surf B Biointerfaces 7:207–214CrossRefGoogle Scholar
  40. Matsuyama T, Nakagawa Y (1996b) Surface-active exolipids: analysis of absolute chemical structures and biological functions. J Microbiol Meth 25:165–175CrossRefGoogle Scholar
  41. Matsuyama T, Fujita M, Yano I (1985) Wetting agent produced by Serratia marcescens. FEMS Microbiol Lett 28:125–129CrossRefGoogle Scholar
  42. Matsuyama T, Murakami T, Fujita M, Fujita S, Yano I (1986) Extracellular vesicle formation and biosurfactant production by Serratia marcescens. J Gen Microbiol 132:865–875Google Scholar
  43. Matsuyama T, Sogawa M, Yano I (1987) Direct colony thin-layer chromatography and rapid characterization of Serratia marcescens mutants defective in production of wetting agents. Appl Environ Microbiol 53:1186–1188PubMedGoogle Scholar
  44. Matsuyama T, Sogawa M, Nakagawa Y (1989) Fractal spreading growth of Serratia marcescens which produces surface active exolipids. FEMS Microbiol Lett 61:243–246CrossRefGoogle Scholar
  45. Matsuyama T, Kaneda K, Ishizuka I, Toida T, Yano I (1990) Surface active novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea. J Bacteriol 172:3015–3022PubMedGoogle Scholar
  46. Matsuyama T, Kaneda K, Nakagawa Y, Isa K, Hara-Hotta H, Yano I (1992) A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol 174:1769–1776PubMedGoogle Scholar
  47. Matsuyama T, Harshey RM, Matsushita M (1993) Self-similar colony morphogenesis by bacteria as the experimental model of fractal growth by a cell population. Fractals 1:302–311CrossRefGoogle Scholar
  48. Matsuyama T, Bhasin A, Harshey RM (1995) Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium. J Bacteriol 177:987–991PubMedGoogle Scholar
  49. McCarter L (1999) The multiple identities of Vibrio parahaemolyticus. J Mol Microbiol Biotechnol 1:51–57PubMedGoogle Scholar
  50. Miyazaki Y, Oka S, Hara-Hotta H, Yano I (1993) Stimulation and inhibition of polymorphonuclear leukocytes phagocytosis by lipoamino acids isolated from Serratia marcescens. FEMS Immunol Med Microbiol 6:265–271PubMedCrossRefGoogle Scholar
  51. Nakagawa Y, Matsuyama T (1993) Chromatographic determination of optical configuration of 3-hydroxy fatty acids composing microbial surfactants. FEMS Microbiol Lett 108:99–102CrossRefGoogle Scholar
  52. Nozawa T, Tanikawa T, Hasegawa H, Takahashi C, Ando Y, Matsushita M, Nakagawa Y, Matsuyama T (2007) Rhamnolipid-dependent spreading growth of Pseudomonas aeruginosa on a high-agar medium: marked enhancement under CO2-rich anaerobic conditions. Microbiol Immunol 51:703–712PubMedGoogle Scholar
  53. Pradel E, Zhang Y, Pujol N, Matsuyama T, Bargmann CI, Ewbank J (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci USA 104:2295–2300PubMedCrossRefGoogle Scholar
  54. Rauprich O, Matsushita M, Weijer CJ, Siegert F, Esipov SE, Shapiro JA (1996) Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol 178:6525–6538PubMedGoogle Scholar
  55. Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, Kjelleberg S (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187:3477–3485PubMedCrossRefGoogle Scholar
  56. Shemyakin MM, Antonov VK, Shkrob AM, Shchelokov VI, Agadzhanyan ZE (1965) Activation of the amide group by acylation; hydroxy- and aminoacyl incorporation in peptide systems. Tetrahedron 21:3537–3572PubMedCrossRefGoogle Scholar
  57. Strobel GA, Morrison SI, Cassella M (2003) Methods for protection of plants from Oomyocyte pathogens by use of Serratia marcescens and isolates. US Patent Appl US2003/0049230 A1Google Scholar
  58. Sunaga S, Li H, Sato Y, Nakagawa Y, Matsuyama T (2004) Identification and characterization of the pswP gene required for the parallel production of prodigiosin and serrawettin W1 in Serratia marcescens. Microbiol Immunol 48:723–728PubMedGoogle Scholar
  59. Takahashi C, Nozawa T, Tanikawa T, Nakagawa Y, Wakita J, Matsushita M, Matsuyama T (2008) Swarming of Pseudomonas aeruginosa PAO1 without differentiation into elongated hyperflagellates on hard agar minimal medium. FEMS Microbiol Lett 280:169–175PubMedCrossRefGoogle Scholar
  60. Tanikawa T, Nakagawa Y, Matsuyama T (2006) Transcriptional downregulator HexS controlling prodigiosin and serrawettin W1 biosynthesis in Serratia marcescens. Microbiol Immunol 50:587–596PubMedGoogle Scholar
  61. Teixidó M, Caba JM, Prades R, Zurita E, Martinell M, Vilaseca M, Albericio F, Giralt E (2007) Does the solid-phase synthesis of a tetrapeptide represent a challenge at the onset of the XXI century? The case of cyclo [(3R)-3-hydroxydecanoyl-L-seryl-(3R)-hydroxydecanoyl-L-seryl]. Int J Pept Res Ther 13:313–327CrossRefGoogle Scholar
  62. Thomas MG, Burkart MD, Walsh CT (2002) Conversion of L-proline to pyrrolyl-2- carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem Biol 9:171–184PubMedCrossRefGoogle Scholar
  63. Toguchi A, Siano M, Burkart M, Harshey RM (2000) Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J Bacteriol 182:6308–6321PubMedCrossRefGoogle Scholar
  64. Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT (2000) Peptide cyclization catalyzed by the thioesterase domain of tyrocidine synthetase. Nature 407:215–218PubMedCrossRefGoogle Scholar
  65. Wakita J, Ràfols I, Itoh H, Matsuyama T, Matsushita M (1998) Experimental investigation on the formation of dense-branching-morphology-like colonies in bacteria. J Phys Soc Jpn 67:3630–3636CrossRefGoogle Scholar
  66. Wang Q, Suzuki A, Mariconda S, Porwollik S, Harshey RM (2005) Sensing wetness; a new role for the bacterial flagellum. EMBO J 24:2034–2042PubMedCrossRefGoogle Scholar
  67. Wasserman HH, Keggi JJ, Mckeon JE (1961) Serratamolide, a metabolic product of Serratia. J Am Chem Soc 83:4107–4108CrossRefGoogle Scholar
  68. Wasserman HH, Keggi JJ, Mckeon JE (1962) The structure of serratamolide. J Am Chem Soc 84:2978–2982CrossRefGoogle Scholar
  69. Williams FD, Schwarzhoff RH (1978) Nature of the swarming phenomenon in Proteus. Annu Rev Microbiol 32:101–122PubMedCrossRefGoogle Scholar
  70. Williamson NR, Fineran PC, Ogawa W, Woodley LR, Salmond GPC (2008) Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia. Env Microbiol 10(5):1202–1217. doi: 10.1111/j. 1462-2920. 2007. 01536.xGoogle Scholar
  71. Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403CrossRefGoogle Scholar
  72. Yamashita M, Nakagawa Y, Li H, Matsuyama T (2001) Silica gel-dependent production of prodigiosin and serrawettins by Serratia marcescens in a liquid culture. Microbes Environ 16:250–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tohey Matsuyama
    • 1
    Email author
  • Taichiro Tanikawa
    • 2
  • Yoji Nakagawa
    • 2
  1. 1.Niigata University Graduate School of Medical and Dental SciencesNiigataJapan
  2. 2.Faculty of AgricultureNiigata UniversityNiigataJapan

Personalised recommendations