Advertisement

Surfactin and Other Lipopeptides from Bacillus spp.

  • Philippe JacquesEmail author
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 20)

Abstract

Isolated during 1950s and 1960s, the group of lipopeptides from Bacillus spp. gather more than 30 different peptides linked to various fatty acid chains. More than a 100 different compounds can so be described. In this chapter, they are classified into four main families: the surfactins, the iturins, the fengycins or plipastatins and the kurstakins. The biochemical mechanism responsible for their biosynthesis, which involved nonribosomal peptide synthetases, is described in detail. The complex cascade of regulation of surfactin synthetase operon and the environmental factors, which influence the lipopeptide production, are discussed. The main physico-chemical properties of these remarkable biosurfactants and their possible relationships with the biological activities are also presented. A brief overview of the molecular strategies developed to get modified lipopeptide compounds and the last bioprocesses set up for their production are given. In the last chapter, the main applications of surfactin are proposed.

Keywords

Bacillus Subtilis Fatty Acid Chain Critical Micellar Concentration Domain Pair Nonribosomal Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author thanks Dr Valérie Leclère, Dr Max Bechet, Dr François Coutte, Ursula Collins and Deirdre Hallinan for their kind re-reading of the manuscript and Isabelle Schack and Damien Jacques for help in the reference list and figure preparation. ProBioGEM is supported by the Université des Sciences et Technologies de Lille, the Region Nord Pas de Calais, the Ministere de la Recherche Scientifique (ANR) and the European Funds for the Regional Development.

References

  1. Abderrahmani A, Tapi A, Nateche F, Hacene H, Chollet M, Leclere V, Wathelet B, Jacques P (2010) Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. SubmittedGoogle Scholar
  2. Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754PubMedCrossRefGoogle Scholar
  3. Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, Budzikiewicz H, Thonart P (2001) Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl Biochem Biotechnol 91–93:551–561PubMedCrossRefGoogle Scholar
  4. Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta Biomembr 1713:51–56CrossRefGoogle Scholar
  5. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494PubMedCrossRefGoogle Scholar
  6. Aron ZD, Dorrestein PC, Blackhall JR, Kelleher NL, Walsh CT (2005) Characterization of a new tailoring domain in polyketide biogenesis: the amine transferase domain of MycA in the mycosubtilin gene cluster. J Am Chem Soc 127:14986–14987PubMedCrossRefGoogle Scholar
  7. Athukorala SNP, Fernando WGD, Rashid KY (2009) Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can J Microbiol 55:1021–1032PubMedCrossRefGoogle Scholar
  8. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin. Plant Physiol 134:307–319PubMedCrossRefGoogle Scholar
  9. Besson F, Peypoux F, Michel G, Delcambe L (1977) The structure of bacillomycin L, an antibiotic from Bacillus subtilis. Eur J Biochem 77:61–67PubMedCrossRefGoogle Scholar
  10. Bonmatin JM, Labbé H, Grangemard I, Peypoux F, Maget-Dana R, Ptak M, Michel G (1995) Production, isolation and characterization of [Leu4]- and [Ile4] surfactins from Bacillus subtilis. Lett Pept Sci 2:41–47CrossRefGoogle Scholar
  11. Bonmatin JM, Laprévote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556PubMedCrossRefGoogle Scholar
  12. Bumpus SB, Evans BS, Thomas PM, Ntai I, Kelleher NL (2009) A proteomics approach to discovering natural products and their biosynthetic pathways. Nat Biotechnol 27:951–956PubMedCrossRefGoogle Scholar
  13. Caboche S, Pupin M, Leclère V, Fontaine A, Jacques P, Kucherov G (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36:D326–D331PubMedCrossRefGoogle Scholar
  14. Caboche S, Pupin M, Leclère V, Jacques P, Kucherov G (2009) Structural pattern matching of nonribosomal peptides. BMC Struct Biol 9:15PubMedCrossRefGoogle Scholar
  15. Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116CrossRefGoogle Scholar
  16. Cao X, Wang AH, Jiao RZ, Wang CL, Mao DZ, Yan L, Zeng B (2009) Surfactin induces apoptosis and G(2)/M arrest in human breast cancer MCF-7 cells through cell cycle factor regulation. Cell Biochem Biophys 55:163–171PubMedCrossRefGoogle Scholar
  17. Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97PubMedCrossRefGoogle Scholar
  18. Chen HL, Chen YS, Juang RS (2007) Separation of surfactin from fermentation broths by acid precipitation and two-stage dead-end ultrafiltration processes. J Membr Sci 299:114–121CrossRefGoogle Scholar
  19. Chen HL, Chen YS, Juang RS (2008) Recovery of surfactin from fermentation broths by hybrid salting-out and filtration process. Sep Purif Technol 59:244–252CrossRefGoogle Scholar
  20. Chiocchini C, Linne U, Stachelhaus T (2006) In vivo biocombinatorial synthesis of lipopeptides by COM domain-mediated reprogramming of the surfactin biosynthetic complex. Chem Biol 13:899–908PubMedCrossRefGoogle Scholar
  21. Cho KM, Math RK, Hong SY, SMd AI, Mandanna DK, Cho JJ, Yun MG, Kim JM, Yun HD (2009) Iturin produced by Bacillus pumilus HY1 from Korean soybean sauce (kanjang) inhibits growth of aflatoxin producing fungi. Food Control 20:402–406CrossRefGoogle Scholar
  22. Chollet-Imbert M, Gancel F, Slomianny C, Jacques P (2009) Differentiated pellicle organization and lipopeptide production in standing culture of Bacillus subtilis strains. Arch Microbiol 191:63–71PubMedCrossRefGoogle Scholar
  23. Chung YR, Kim CH, Hwang I, Chun J (2000) Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500PubMedCrossRefGoogle Scholar
  24. Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the nonribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183PubMedCrossRefGoogle Scholar
  25. Cooper DG, Macdonald CR, Duff SJ, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412PubMedGoogle Scholar
  26. Cosby WM, Vollenbroich D, Lee OH, Zuber P (1998) Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 180:1438–1445PubMedGoogle Scholar
  27. Coutte F, Leclère V, Béchet M, Guez JS, Lecouturier D, Chollet-Imbert M, Dhulster P, Jacques P (2010a) Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J Appl Microbiol. doi:10.1111/j13652672201004683PubMedGoogle Scholar
  28. Coutte F, Lecouturier D, Ait Yahia S, Leclère V, Bèchet M, Jacques P, Dhulster P (2010b) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol. doi:10.1007/s0025301025048PubMedGoogle Scholar
  29. Davis DA, Lynch HC, Varley J (2001) The application of foaming for the recovery of surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microb Technol 28:346–354PubMedCrossRefGoogle Scholar
  30. Debois D, Hamze K, Guérineau V, Le Caër JP, Holland IB, Lopes P, Ouazzani J, Séror SJ, Brunelle A, Laprévote O (2008) In situ localisation and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry. Proteomics 8:3682–3691PubMedCrossRefGoogle Scholar
  31. Delcambe L (1950) Iturin, new antibiotic produced by Bacillus subtilis. C R Seances Soc Biol Fil 144:1431–1434PubMedGoogle Scholar
  32. Deleu M, Paquot M, Jacques P, Thonart P, Adriaensen Y, Dufrène YF (1999a) Nanometer scale organization of mixed surfactin/phosphatidylcholine monolayers. Biophys J 77:2304–2310PubMedCrossRefGoogle Scholar
  33. Deleu M, Razafindralambo H, Popineau Y, Jacques P, Thonart P, Paquot M (1999b) Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf A Physicochem Eng Asp 152:3–10CrossRefGoogle Scholar
  34. Deleu M, Nott K, Brasseur R, Jacques P, Thonart P, Dufrène YF (2001) Imaging mixed lipid monolayers by dynamic atomic force microscopy. Biochim Biophys Acta Biomembr 1513:55–62CrossRefGoogle Scholar
  35. Deleu M, Bouffioux O, Razafindralambo H, Paquot M, Hbid C, Thonart P, Jacques P, Brasseur R (2003) Interaction of surfactin with membranes: a computational approach. Langmuir 19:3377–3385CrossRefGoogle Scholar
  36. Dimitrov K, Gancel F, Montastruc L, Nikov I (2008) Liquid membrane extraction of bio-active amphiphilic substances: recovery of surfactin. Biochem Eng J 42:248–253CrossRefGoogle Scholar
  37. Drouin CM, Cooper DG (1992) Biosurfactants and aqueous two-phase fermentation. Biotechnol Bioeng 40:86–90PubMedCrossRefGoogle Scholar
  38. Du L, Sanchez C, Shen B (2001) Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng 3:78–95PubMedCrossRefGoogle Scholar
  39. Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta Gen Subj 1726:87–95CrossRefGoogle Scholar
  40. Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci USA 96:13294–13299PubMedCrossRefGoogle Scholar
  41. Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW (2007) Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 73:3490–3496PubMedCrossRefGoogle Scholar
  42. Eppelmann K, Stachelhaus T, Marahiel MA (2002) Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 41:9718–9726PubMedCrossRefGoogle Scholar
  43. Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF (1995) Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J Antibiot (Tokyo) 48:1240–1247CrossRefGoogle Scholar
  44. Fickers P, Leclère V, Guez JS, Béchet M, Coucheney F, Joris B, Jacques P (2008) Temperature dependence of mycosubtilin homologue production in Bacillus subtilis ATCC6633. Res Microbiol 159:449–457PubMedCrossRefGoogle Scholar
  45. Fickers P, Guez JS, Damblon C, Leclère V, Béchet M, Jacques P, Joris B (2009) High-level biosynthesis of the anteiso-C(17) isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl Environ Microbiol 75:4636–4640PubMedCrossRefGoogle Scholar
  46. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides 1. Annu Rev Microbiol 58:453–488PubMedCrossRefGoogle Scholar
  47. Francius G, Dufour S, Deleu M, Paquot M, Mingeot-Leclercq MP, Dufréne YF (2008) Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity. Biochim Biophys Acta Biomembr 1778:2058–2068CrossRefGoogle Scholar
  48. From C, Hormazabal V, Granum PE (2007) Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice. Int J Food Microbiol 115:319–324PubMedCrossRefGoogle Scholar
  49. Galli G, Rodriguez F, Cosmina P, Pratesi C, Nogarotto R, de Ferra F, Grandi G (1994) Characterization of the surfactin synthetase multi-enzyme complex. Biochim Biophys Acta 1205:19–28PubMedCrossRefGoogle Scholar
  50. Gancel F, Montastruc L, Liu T, Zhao L, Nikov I (2009) Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles. Process Biochem 44:975–978CrossRefGoogle Scholar
  51. Gevers W, Kleinkauf H, Lipmann F (1968) The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci USA 60:269–276PubMedCrossRefGoogle Scholar
  52. Grau A, Gomez-Fernandez JC, Peypoux F, Ortiz A (2001) Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin A. Peptides 22:1–5PubMedCrossRefGoogle Scholar
  53. Guez JS, Chenikher S, Cassar JP, Jacques P (2007) Setting up and modelling of overflowing fed-batch cultures of Bacillus subtilis for the production and continuous removal of lipopeptides. J Biotechnol 131:67–75PubMedCrossRefGoogle Scholar
  54. Guez JS, Muller CH, Danzé PM, Buchs J, Jacques P (2008) Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J Biotechnol 134:121–126PubMedCrossRefGoogle Scholar
  55. Hahn M, Stachelhaus T (2004) Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proc Natl Acad Sci USA 101:15585–15590PubMedCrossRefGoogle Scholar
  56. Hamoen LW, Eshuis H, Jongbloed J, Venema G, van Sinderen D (1995) A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15:55–63PubMedCrossRefGoogle Scholar
  57. Hamoen LW, Venema G, Kuipers OP (2003) Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149:9–17PubMedCrossRefGoogle Scholar
  58. Hansen DB, Bumpus SB, Aron ZD, Kelleher NL, Walsh CT (2007) The loading module of mycosubtilin: an adenylation domain with fatty acid selectivity. J Am Chem Soc 129:6366–6367PubMedCrossRefGoogle Scholar
  59. Hathout Y, Ho YP, Ryzhov V, Demirev P, Fenselau C (2000) Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 63:1492–1496PubMedCrossRefGoogle Scholar
  60. Hayashi K, Kensuke T, Kobayashi K, Ogasawara N, Ogura M (2006) Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Mol Microbiol 59:1714–1729PubMedCrossRefGoogle Scholar
  61. Hbid C, Jacques P, Razafindralambo H, Mpoyo MK, Meurice E, Paquot M, Thonart P (1996) Influence of the production of two lipopeptides, Iturin A and Surfactin S1, on oxygen transfer during Bacillus subtilis fermentation. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol 57–58:571–579CrossRefGoogle Scholar
  62. Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J 36:305–314PubMedCrossRefGoogle Scholar
  63. Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A, Leenders F, Hitzeroth G, Vater J (2004) Genetic analysis of the biosynthesis of nonribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics 272:363–378PubMedCrossRefGoogle Scholar
  64. Horowitz S, Gilbert JN, Griffin WM (1990) Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J Ind Microbiol Biotechnol 6:243–248Google Scholar
  65. Huszcza E, Burczyk B (2006) Surfactin isoforms from Bacillus coagulans. Z Naturforsch C 61:727–733PubMedGoogle Scholar
  66. Hwang YH, Kim MS, Song IB, Park BK, Lim JH, Park SC, Yun HI (2009) Subacute (28 day) toxicity of surfactin C, a lipopeptide produced by Bacillus subtilis, in Rats. J Health Sci 55:351–355CrossRefGoogle Scholar
  67. Isa MHM, Frazier RA, Jauregi P (2008) A further study of the recovery and purification of surfactin from fermentation broth by membrane filtration. Sep Purif Technol 64:176–182CrossRefGoogle Scholar
  68. Itokawa H, Miyashita T, Morita H, Takeya K, Hirano T, Homma M, Oka K (1994) Structural and conformational studies of [Ile7] and [Leu7]surfactins from Bacillus subtilis natto. Chem Pharm Bull (Tokyo) 42:604–607CrossRefGoogle Scholar
  69. Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, De Pauw E, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl Biochem Biotechnol 77:223–233CrossRefGoogle Scholar
  70. Jourdan E, Henry G, Duby F, Dommes J, Barthélémy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468PubMedCrossRefGoogle Scholar
  71. Julkowska D, Obuchowski M, Holland IB, Séror SJ (2005) Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol 187:65–76PubMedCrossRefGoogle Scholar
  72. Kakinuma A, Tamura G, Arima K (1968) Wetting of fibrin plate and apparent promotion of fibrinolysis by surfactin, a new bacterial peptidelipid surfactant. Experientia 24:1120–1121PubMedCrossRefGoogle Scholar
  73. Kameda Y, Ouhira S, Matsui K (1974) Antitumor activity of Bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem Pharm Bull 22:938–944PubMedCrossRefGoogle Scholar
  74. Kanlayavattanakul M, Lourith N (2010) Lipopeptides in cosmetics. Int J Cosmet Sci 32:1–8PubMedCrossRefGoogle Scholar
  75. Kell H, Holzwarth JF, Boettcher C, Heenan RK, Vater J (2007) Physicochemical studies of the interaction of the lipoheptapeptide surfactin with lipid bilayers of L-alpha-dimyristoyl phosphatidylcholine. Biophys Chem 128:114–124PubMedCrossRefGoogle Scholar
  76. Kim HS, Yoon BD, Lee CH, Suh HH, Oh HM, Katsuragi T, Tani Y (1997) Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J Ferment Bioeng 84:41–46CrossRefGoogle Scholar
  77. Kim K, Jung SY, Lee DK, Jung JK, Park JK, Kim DK, Lee CH (1998) Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Biochem Pharmacol 55:975–985PubMedCrossRefGoogle Scholar
  78. Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi YT (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:942–949PubMedCrossRefGoogle Scholar
  79. Konz D, Doekel S, Marahiel MA (1999) Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 181:133–140PubMedGoogle Scholar
  80. Kopp F, Marahiel MA (2007) Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat Prod Rep 24:735–749PubMedCrossRefGoogle Scholar
  81. Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096PubMedCrossRefGoogle Scholar
  82. Kracht M, Rokos H, Ozel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot (Tokyo) 52:613–619CrossRefGoogle Scholar
  83. Lai CC, Huang Y, Wei YH, Chang JS (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614PubMedCrossRefGoogle Scholar
  84. Landy M, Warren GH, Rosenman SB, Colio LG (1948) Bacillomycin an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67:530–541Google Scholar
  85. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584PubMedCrossRefGoogle Scholar
  86. Leclère V, Marti R, Béchet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483PubMedCrossRefGoogle Scholar
  87. Lee SC, Kim SH, Park IH, Chung SY, Choi YL (2007) Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity. Arch Microbiol 188:307–312PubMedCrossRefGoogle Scholar
  88. Lin SC, Minton MA, Sharma MM, Georgiou G (1994) Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol 60:31–38PubMedGoogle Scholar
  89. Lin SC, Lin KG, Lo CC, Lin YM (1998) Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme Microb Technol 23:267–273CrossRefGoogle Scholar
  90. Liu XY, Yang SZ, Mu BZ (2009) Production and characterization of a C15-surfactin-O-methyl ester by a lipopeptide producing strain Bacillus subtilis HSO121. Process Biochem 44:1144–1151CrossRefGoogle Scholar
  91. Maget-Dana R, Thimon L, Peypoux F, Ptak M (1992) Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047–1051PubMedCrossRefGoogle Scholar
  92. Marahiel MA (2009) Working outside the protein-synthesis rules: insights into nonribosomal peptide synthesis. J Pept Sci 15:799–807PubMedCrossRefGoogle Scholar
  93. May JJ, Kessler N, Marahiel MA, Stubbs MT (2002) Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci USA 99:12120–12125PubMedCrossRefGoogle Scholar
  94. Menkhaus M, Ullrich C, Kluge B, Vater J, Vollenbroich D, Kamp RM (1993) Structural and functional organization of the surfactin synthetase multienzyme system. J Biol Chem 268:7678–7684PubMedGoogle Scholar
  95. Mireles JR II, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854PubMedCrossRefGoogle Scholar
  96. Mizumoto S, Hirai M, Shoda M (2007) Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol 75:1267–1274PubMedCrossRefGoogle Scholar
  97. Mofid MR, Finking R, Essen LO, Marahiel MA (2004) Structure-based mutational analysis of the 4′-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism. Biochemistry 43:4128–4136PubMedCrossRefGoogle Scholar
  98. Montastruc L, Liu T, Gancel F, Zhao L, Nikov I (2008) Integrated process for production of surfactin. Part 2. Equilibrium and kinetic study of surfactin adsorption onto activated carbon. Biochem Eng J 38:349–354CrossRefGoogle Scholar
  99. Mootz HD, Kessler N, Linne U, Eppelmann K, Schwarzer D, Marahiel MA (2002) Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J Am Chem Soc 124:10980–10981PubMedCrossRefGoogle Scholar
  100. Morikawa M, Ito M, Imanaka T (1992) Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1. J Ferment Bioeng 74:255–261CrossRefGoogle Scholar
  101. Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide biosurfactants. Biochim Biophys Acta Mol Cell Biol Lipids 1488:211–218CrossRefGoogle Scholar
  102. Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234:43–49PubMedCrossRefGoogle Scholar
  103. Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378CrossRefGoogle Scholar
  104. Mulligan CN, Gibbs BF (1990) Recovery of biosurfactants by ultrafiltration. J Chem Technol Biotechnol 47:23–29PubMedCrossRefGoogle Scholar
  105. N’Dir B, Hbid C, Cornelius C, Roblain D, Jacques P, Vanhentenryck F, Diop M, Thonart P (1994) Propriétés antifongiques de la microflore du netetu. Cah Agric 3:23–30Google Scholar
  106. Nakano MM, Magnuson R, Myers A, Curry J, Grossman AD, Zuber P (1991) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173:1770–1778PubMedGoogle Scholar
  107. Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics. Production, isolation, chemical properties, structure and biological activity. J Antibiot (Tokyo) 43:267–280CrossRefGoogle Scholar
  108. Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. III. Structural elucidation of plipastatins. J Antibiot (Tokyo) 39:755–761CrossRefGoogle Scholar
  109. Nitschke M, Costa SGVA (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259CrossRefGoogle Scholar
  110. Ohno A, Ano T, Shoda M (1995a) Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J Ferment Bioeng 80:517–519CrossRefGoogle Scholar
  111. Ohno A, Ano T, Shoda M (1995b) Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol Bioeng 47:209–214PubMedCrossRefGoogle Scholar
  112. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125PubMedCrossRefGoogle Scholar
  113. Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38PubMedCrossRefGoogle Scholar
  114. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090PubMedCrossRefGoogle Scholar
  115. Park SY, Kim Y (2009) Surfactin inhibits immunostimulatory function of macrophages through blocking NK-κB, MAPK and Akt pathway. Int Immunopharmacol 9:886–893PubMedCrossRefGoogle Scholar
  116. Peypoux F (1978) Structure of iturine A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17:3992–3996PubMedCrossRefGoogle Scholar
  117. Peypoux F, Michel G, Delcambe L (1976) The structure of mycosubtilin, an antibiotic isolated from Bacillus subtilis. Eur J Biochem 63:391–398PubMedCrossRefGoogle Scholar
  118. Peypoux F, Besson F, Michel G (1978) Structure of iturin C from Bacillus subtilis. Tetrahedron 34:1147–1152CrossRefGoogle Scholar
  119. Peypoux F, Besson F, Michel G, Delcambe L (1981) Structure of bacillomycin D, a new antibiotic of the iturin group. Eur J Biochem 118:323–327PubMedCrossRefGoogle Scholar
  120. Peypoux F, Marion D, Maget-Dana R (1985) Structure of bacillomycin F, a new peptidolipid antibiotic of the iturin group. Eur J Biochem 153:335–340PubMedCrossRefGoogle Scholar
  121. Peypoux F, Pommier MT, Marion D, Ptak M, Das BC, Michel G (1986) Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J Antibiot (Tokyo) 39:636–641CrossRefGoogle Scholar
  122. Peypoux F, Bonmatin JM, Labbé H, Das BC, Ptak M, Michel G (1991) Isolation and characterization of a new variant of surfactin, the [Val7]surfactin. Eur J Biochem 202:101–106PubMedCrossRefGoogle Scholar
  123. Peypoux F, Bonmatin JM, Labbé H, Grangemard I, Das BC, Ptak M, Wallach J, Michel G (1994) [Ala4]surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur J Biochem 224:89–96PubMedCrossRefGoogle Scholar
  124. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563PubMedCrossRefGoogle Scholar
  125. Razafindralambo H, Paquot M, Hbid C, Jacques P, Destain J, Thonart P (1993) Purification of antifungal lipopeptides by reversed-phase high-performance liquid chromatography. J Chromatogr 639:81–85PubMedCrossRefGoogle Scholar
  126. Razafindralambo H, Paquot M, Baniel A, Popineau Y, Hbid C, Jacques P, Thonart P (1996) Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J Am Oil Chem Soc 73:149–151CrossRefGoogle Scholar
  127. Razafindralambo H, Popineau Y, Deleu M, Hbid C, Jacques P, Thonart P, Paquot M (1997) Surface-active properties of surfactin/iturin A mixtures produced by Bacillus subtilis. Langmuir 13:6026–6031CrossRefGoogle Scholar
  128. Rodrigues L, Banat IB, Teixera J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618PubMedCrossRefGoogle Scholar
  129. Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440PubMedCrossRefGoogle Scholar
  130. Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch C 54:859–865PubMedGoogle Scholar
  131. Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Progr Energy Combust Sci 34:714–724CrossRefGoogle Scholar
  132. Shakerifard P, Gancel F, Jacques P, Faille C (2009) Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling 25:533–541PubMedCrossRefGoogle Scholar
  133. Shen HH, Thomas RK, Chen CY, Darton RC, Baker SC, Penfold J (2009) Aggregation of the naturally occurring lipopeptide, surfactin, at interfaces and in solution: an unusual type of surfactant? Langmuir 25:4211–4218PubMedCrossRefGoogle Scholar
  134. Sheppard JD, Cooper DG (1991) The response of Bacillus subtilis ATCC 21332 to manganese during continuous-phased growth. Appl Microbiol Biotechnol 35:72–76CrossRefGoogle Scholar
  135. Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738PubMedCrossRefGoogle Scholar
  136. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121PubMedCrossRefGoogle Scholar
  137. Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69–72PubMedCrossRefGoogle Scholar
  138. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505PubMedCrossRefGoogle Scholar
  139. Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41PubMedCrossRefGoogle Scholar
  140. Sumi H, Sasaki T, Yatagai C, Kozaki Y (2000) Determination and properties of the fibrinolysis accelerating substance (FAS) in Japanese fermented soybean Natto. Nippon Nōgei Kagakukaishi 74:1259–1264CrossRefGoogle Scholar
  141. Sun H, Bie X, Lu F, Lu Y, Wu Y, Lu Z (2009) Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter. Can J Microbiol 55:1003–1006PubMedCrossRefGoogle Scholar
  142. Tanovic A, Samel SA, Essen LO, Marahiel MA (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321:659–663PubMedCrossRefGoogle Scholar
  143. Tapi A, Chollet-Imbert M, Scherens B, Jacques P (2010) New approach for the detection of nonribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85:1521–1531PubMedCrossRefGoogle Scholar
  144. Thomas DW, Ito T (1969) The revised structure of the peptide antibiotic esperin, established by mass spectrometry. Tetrahedron 25:1985–1990PubMedCrossRefGoogle Scholar
  145. Tosato V, Albertini AM, Zotti M, Sonda S, Bruschi CV (1997) Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology 143:3443–3450PubMedCrossRefGoogle Scholar
  146. Trischman JA, Jensen PR, Fenical W (1994) Halobacillin: a cytotoxic cyclic acylpeptide of the iturin class produced by a marine Bacillus. Tetrahedron Lett 35:5571–5574CrossRefGoogle Scholar
  147. Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M (1999) The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob Agents Chemother 43:2183–2192PubMedGoogle Scholar
  148. Tsuge K, Akiyama T, Shoda M (2001a) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183:6265–6273PubMedCrossRefGoogle Scholar
  149. Tsuge K, Ohata Y, Shoda M (2001b) Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrob Agents Chemother 45:3566–3573PubMedCrossRefGoogle Scholar
  150. Tsuge K, Inoue S, Ano T, Itaya M, Shoda M (2005) Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrob Agents Chemother 49:4641–4648PubMedCrossRefGoogle Scholar
  151. Umezawa H, Aoyagi T, Takeuchi T, Hamada M, Naganawa H, Muraoka Y, Nishikiori T (1988) Plipastatin and method for preparation thereof. Patent No 4742155Google Scholar
  152. Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin – a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29–3. J Antibiot (Tokyo) 39:888–901CrossRefGoogle Scholar
  153. Vollenbroich D, Pauli G, Ozel M, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49PubMedGoogle Scholar
  154. Volpon L, Tsan P, Majer Z, Vass E, Hollosi M, Noguera V, Lancelin JM, Besson F (2007) NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics. Spectrochim Acta A Mol Biomol Spectrosc 67:1374–1381PubMedCrossRefGoogle Scholar
  155. Wakayama S, Ishikawa F, Oishi K (1984) Mycocerein, a novel antifungal peptide antibiotic produced by Bacillus cereus. Antimicrob Agents Chemother 26:939–940PubMedCrossRefGoogle Scholar
  156. Walton RB, Woodruff HB (1949) A crystalline antifungal agent, mycrosubtilin, isolated from subtilin broth 1. J Clin Invest 28:924–926PubMedCrossRefGoogle Scholar
  157. Wei YH, Wang LF, Chang JS (2004) Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnol Prog 20:979–983PubMedCrossRefGoogle Scholar
  158. Whang LM, Liu PW, Ma CC, Cheng SS (2009) Application of rhamnolipid and surfactin for enhanced diesel biodegradation – effects of pH and ammonium addition. J Hazard Mater 164:1045–1050PubMedCrossRefGoogle Scholar
  159. Winkelmann G, Allgaier H, Lupp R, Jung G (1983) Iturin AL – a new long chain iturin a possessing an unusual high content of C16-beta-amino acids. J Antibiot (Tokyo) 36:1451–1457CrossRefGoogle Scholar
  160. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713PubMedGoogle Scholar
  161. Yakimov MM, Abraham WR, Meyer H, Laura G, Golyshin PN (1999) Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochim Biophys Acta 1438:273–280PubMedCrossRefGoogle Scholar
  162. Yakimov MM, Giuliano L, Timmis KN, Golyshin PN (2000) Recombinant acylheptapeptide lichenysin: high level of production by Bacillus subtilis cells. J Mol Microbiol Biotechnol 2:217–224PubMedGoogle Scholar
  163. Yoneda T, Miyota Y, Furuya K, Tsuzuki T (2002) Production process of surfactin. Showa Denko K.K.(Tokyo, JP). United States Patent 7011969Google Scholar
  164. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963CrossRefGoogle Scholar
  165. Zhang CZ, Liang FL, Zhang XP, Diao HX, Liu RL (2000) Physico-chemical properties and effect on crude oil of a bacterium-produced lipopeptide biosurfactant. Oilfield Chem 17:172–176Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.ProBioGEM, Polytech-LilleUniv Lille Nord de France, USTLVilleneuve d’AscqFrance

Personalised recommendations