Web Usage Mining

  • Pablo E. Román
  • Gastón L’Huillier
  • Juan D. Velásquez
Part of the Studies in Computational Intelligence book series (SCI, volume 311)

Abstract

In recent years, e-businesses have been profiting from recent advances on the analysis of web customer behaviour. For decades experts have debated on ways of presenting the content or structure in a web site in order to captivate the attention of the web user in the web intelligence community. A solution to this could help boost sales in an e-commerce site. Web Usage Mining (WUM) is the extraction of the web user browsing behaviour using data mining techniques on web data. According to this, several models of data analysis have been used to characterize the Web User Browsing Behaviour. Nevertheless, outstanding techniques have recently developed in order to improve the conventional success rates for behavioural pattern extraction. In this chapter different approaches for WUM are presented, considering their main insights, results, and applications to web behaviour systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayyagari, P., Sun, Y.: Modeling the internet and the web: Probabilistic methods and algorithms. by pierre baldi, paolo frasconi, padhraic smith, john wiley and sons ltd., west sussex, england, 2003. 285 pp isbn 0 470 84906 1. Inf. Process. Manage. 42(1), 325–326 (2006)CrossRefGoogle Scholar
  2. 2.
    Baeza-yates, R., Castillo, C.: Crawling the infinite web: Five levels are enough. In: Leonardi, S. (ed.) WAW 2004. LNCS, vol. 3243, pp. 156–167. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Berendt, B., Hotho, A., Stumme, G.: Data preparation for mining world wide web browsing patterns. Journal of Knowlegde and Information Systems 1(1), 5–32 (1999)Google Scholar
  4. 4.
    Berendt, B., Mobasher, B., Spiliopoulou, M., Wiltshire, J.: Measuring the accuracy of sessionizers for web usage analysis. In: Proc. of the Workshop on Web Mining, First SIAM Internat.Conf. on Data Mining, pp. 7–14 (2001)Google Scholar
  5. 5.
    Bixby, R.E.: Solving real-world linear programs: A decade and more of progress. Operations Research 50(1), 3–15 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Borges, J., Levene, M.: Data mining of user navigation patterns. In: WEBKDD 1999: Revised Papers from the International Workshop on Web Usage Analysis and User Profiling, London, UK, pp. 92–111. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Borges, J., Levene, M.: Evaluating variable-length markov chain models for analysis of user web navigation sessions. IEEE Trans. on Knowl. and Data Eng. 19(4), 441–452 (2007)CrossRefGoogle Scholar
  8. 8.
    Burget, R., Rudolfova, I.: Web page element classification based on visual features. In: Asian Conference on Intelligent Information and Database Systems, vol. 0, pp. 67–72 (2009)Google Scholar
  9. 9.
    Cadez, I., Heckerman, D., Meek, C., Smyth, P., White, S.: Visualization of navigation patterns on a web site using model-based clustering. In: KDD 2000: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 280–284. ACM, New York (2000)CrossRefGoogle Scholar
  10. 10.
    Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1), 2 (2006)CrossRefGoogle Scholar
  11. 11.
    Chen, X., Zhang, X.: A popularity-based prediction model for web prefetching. Computer 36(3), 63–70 (2003)MATHCrossRefGoogle Scholar
  12. 12.
    Cooley, R., Mobasher, B., Srivastava, J.: Towards semantic web mining. In: Proc. in First Int. Semantic Web Conference, pp. 264–278 (2002)Google Scholar
  13. 13.
    Dell, R.F., Román, P.E., Velásquez, J.D.: Web user session reconstruction using integer programming. In: Procs. of The 2008 IEEE/WIC/ACM International Conference on Web Intelligence, Sydney, Australia, December 2008, pp. 385–388 (2008)Google Scholar
  14. 14.
    Demir, G.N., Uyar, A.S., Ögüdücü, S.G.: Graph-based sequence clustering through multiobjective evolutionary algorithms for web recommender systems. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 1943–1950. ACM, New York (2007)CrossRefGoogle Scholar
  15. 15.
    Dongshan, X., Junyi, S.: A new markov model for web access prediction. Computing in Science and Engg. 4(6), 34–39 (2002)CrossRefGoogle Scholar
  16. 16.
    Dujovne, L.E., Velásquez, J.D.: Design and implementation of a methodology for identifying website keyobjects. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based and Intelligent Information and Engineering Systems. LNCS, Part I, vol. 5711, pp. 301–308. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Eirinaki, M., Vazirgiannis, M., Kapogiannis, D.: Web path recommendations based on page ranking and markov models. In: WIDM 2005: Proceedings of the 7th annual ACM international workshop on Web information and data management, pp. 2–9. ACM, New York (2005)CrossRefGoogle Scholar
  18. 18.
    Facca, F., Lanzi, P.: Recent developments in web usage mining research. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 140–150. Springer, Heidelberg (2003)Google Scholar
  19. 19.
    Felzenszwalb, P.F., Huttenlocher, D.P., Kleinberg, J.M.: Fast algorithms for large-state-space hmms with applications to web usage analysis. In: Thrun, S., Saul, L.K., Schölkopf, B. (eds.) NIPS. MIT Press, Cambridge (2003)Google Scholar
  20. 20.
    Glassman, S.: A caching relay for the world wide web. In: Selected papers of the first conference on World-Wide Web, pp. 165–173. Elsevier Science Publishers B. V., Amsterdam (1994)Google Scholar
  21. 21.
    Grannis, K., Davis, E.: Online sales to climb despite struggling economy, According to Shop.org/Forrester Research Study (2008)Google Scholar
  22. 22.
    Grannis, K., Davis, E.: China internet network information center. In: 14th statistical survey report on the internet development of china (2009), http://www.cnnic.net.cn/uploadfiles/pdf/2009/10/13/94556.pdf
  23. 23.
    Gündüz, Ş., Özsu, M.T.: A web page prediction model based on click-stream tree representation of user behavior. In: KDD 2003: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 535–540. ACM, New York (2003)CrossRefGoogle Scholar
  24. 24.
    Guo, Y.Z., Ramamohanarao, K., Park, L.A.: Grouped ecoc conditional random fields for prediction of web user behavior. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 757–763. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Guo, Y.Z., Ramamohanarao, K., Park, L.A.F.: Web page prediction based on conditional random fields. In: Proceeding of the 2008 conference on ECAI 2008, pp. 251–255. IOS Press, Amsterdam (2008)Google Scholar
  26. 26.
    Hasan, T., Mudur, S.P., Shiri, N.: A session generalization technique for improved web usage mining. In: WIDM 2009: Proceeding of the eleventh international workshop on Web information and data management, pp. 23–30. ACM, New York (2009)CrossRefGoogle Scholar
  27. 27.
    Hay, B., Wets, G., Vanhoof, K.: Mining navigation patterns using a sequence alignment method. Knowl. Inf. Syst. 6(2), 150–163 (2004)Google Scholar
  28. 28.
    Hongwei, W., Xie, L.: Adaptive site design based on web mining and topology. In: CSIE 2009: Proceedings of the 2009 WRI World Congress on Computer Science and Information Engineering, Washington, DC, USA, pp. 184–189. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar
  29. 29.
    Huberman, B., Pirolli, P., Pitkow, J., Lukose, R.M.: Strong regularities in world wide web surfing. Science 280(5360), 95–97 (1998)CrossRefGoogle Scholar
  30. 30.
    Huntington, P., Nicholas, D., Jamali, H.R.: Website usage metrics: A re-assessment of session data. Information Processing & Management 44(1), 358–372 (2008)CrossRefGoogle Scholar
  31. 31.
    Hannah Inbarani, H., Thangavel, K., Pethalakshmi, A.: Rough set based feature selection for web usage mining. In: ICCIMA 2007: Proceedings of the International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), Washington, DC, USA, pp. 33–38. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  32. 32.
    Ingwersen, P., Jirvelin, K.: The Turn: Integration of Information Seeking and Retrieval in Context, 1st edn. Springer, Heidelberg (2005)MATHGoogle Scholar
  33. 33.
    Jespersen, S., Pedersen, T.B., Thorhauge, J.: Evaluating the markov assumption for web usage mining. In: WIDM 2003: Proceedings of the 5th ACM international workshop on Web information and data management, pp. 82–89. ACM, New York (2003)CrossRefGoogle Scholar
  34. 34.
    Jin, X., Zhou, Y., Mobasher, B.: Web usage mining based on probabilistic latent semantic analysis. In: KDD 2004: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, New York (2004)Google Scholar
  35. 35.
    Joshi, A., Krishnapuram, R.: On mining web access logs. In: Proc. of the 2000 ACM SIGMOD Workshop on Research Issue in Data Mining and Knowledge Discovery, pp. 63–69 (2000)Google Scholar
  36. 36.
    Juels, A., Jakobsson, M., Jagatic, T.N.: Cache cookies for browser authentication (extended abstract). In: SP 2006: Proceedings of the 2006 IEEE Symposium on Security and Privacy, Washington, DC, USA, pp. 301–305. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  37. 37.
    Kausshik, A.: Web Analytics 2.0: The Art of Online Accountability and Science of Customer Centricity. Sybex (2009)Google Scholar
  38. 38.
    Kellar, M.: An Examination of User Behaviour during Web Information Tasks. PhD thesis, Dalhousie University, Halifax, Nova Scotia, Canada (2007)Google Scholar
  39. 39.
    Kolias, C., Kolias, V., Anagnostopoulos, I., Kambourakis, G., Kayafas, E.: Enhancing user privacy in adaptive web sites with client-side user profiles. In: SMAP 2008: Proceedings of the 2008 Third International Workshop on Semantic Media Adaptation and Personalization, Washington, DC, USA, pp. 170–176. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  40. 40.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  41. 41.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML 2001: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 282–289. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  42. 42.
    Lan, M., Tan, C.L., Su, J., Lu, Y.: Supervised and traditional term weighting methods for automatic text categorization. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 721–735 (2009)CrossRefGoogle Scholar
  43. 43.
    Langford, D.: Internet ethics. MacMillan Press Ltd., Basingstoke (2000)Google Scholar
  44. 44.
    Levene, M., Borges, J., Loizou, G.: Zipf’s law for web surfers. Knowl. Inf. Syst. 3(1), 120–129 (2001)MATHCrossRefGoogle Scholar
  45. 45.
    Liu, J., Zhang, S., Yang, J.: Characterizing web usage regularities with information foraging agents. IEEE Trans. on Knowl. and Data Eng. 16(5), 566–584 (2004)CrossRefGoogle Scholar
  46. 46.
    Lohr, S.: A 1 million dollars research bargain for netflix, and maybe a model for others. New York Times (2009)Google Scholar
  47. 47.
    Loyola, P., Román, P.E., Velásquez, J.D.: Colony surfer: Discovering the distribution of text preferences from web usage. In: Procs. Of the First Workshop in Business Analytics and Optimization, BAO (2010)Google Scholar
  48. 48.
    Manning, C.D., Schutze, H.: Fundation of Statistical Natural Language Processing. The MIT Press, Cambridge (1999)Google Scholar
  49. 49.
    Masseglia, F., Poncelet, P., Teisseire, M., Marascu, A.: Web usage mining: extracting unexpected periods from web logs. Data Min. Knowl. Discov. 16(1), 39–65 (2008)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Mayer-Schonberger, V.: Nutzliches vergessen. In: Goodbye privacy grundrechte in der digitalen welt (Ars Electronica), pp. 253–265 (2008)Google Scholar
  51. 51.
    Mikroyannidis, A., Theodoulidis, B.: Heraclitus: A framework for semantic web adaptation. IEEE Internet Computing 11(3), 45–52 (2007)CrossRefGoogle Scholar
  52. 52.
    Mobasher, B., Cooley, R., Srivastava, J.: Creating adaptive web sites through usage-based clustering of urls. In: KDEX 1999: Proceedings of the 1999 Workshop on Knowledge and Data Engineering Exchange, Washington, DC, USA, p. 19. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  53. 53.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. Commun. ACM 43(8), 142–151 (2000)CrossRefGoogle Scholar
  54. 54.
    Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Effective personalization based on association rule discovery from web usage data. In: WIDM 2001: Proceedings of the 3rd international workshop on Web information and data management, pp. 9–15. ACM, New York (2001)CrossRefGoogle Scholar
  55. 55.
    Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Discovery and evaluation of aggregate usage profiles for web personalization. Data Min. Knowl. Discov. 6(1), 61–82 (2002)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Obendorf, H., Weinreich, H., Herder, E., Mayer, M.: Web page revisitation revisited: implications of a long-term click-stream study of browser usage. In: CHI 2007: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 597–606 (2007)Google Scholar
  57. 57.
    Olston, C., Chi, E.H.: Scenttrails: Integrating browsing and searching on the web. ACM Trans. Comput.-Hum. Interact. 10(3), 177–197 (2003)CrossRefGoogle Scholar
  58. 58.
    Park, S., Suresh, N.C., Jeong, B.-K.: Sequence-based clustering for web usage mining: A new experimental framework and ann-enhanced k-means algorithm. Data Knowl. Eng. 65(3), 512–543 (2008)CrossRefGoogle Scholar
  59. 59.
    Paterek, A.: Improving regularized singular value decomposition for collaborative filtering. In: Proceedings of KDD Cup and Workshop (2007)Google Scholar
  60. 60.
    Perkowitz, M., Etzioni, O.: Towards adaptive web sites: conceptual framework and case study. Artif. Intell. 118(1-2), 245–275 (2000)MATHCrossRefGoogle Scholar
  61. 61.
    Plumbaum, T., Stelter, T., Korth, A.: Semantic web usage mining: Using semantics to understand user intentions. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 391–396. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  62. 62.
    Resnick, S.I.: Adventures in stochastic processes. Birkhauser Verlag, Basel (1992)MATHGoogle Scholar
  63. 63.
    Ríos, S.A., Velásquez, J.D.: Semantic web usage mining by a concept-based approach for off-line web site enhancements. In: WI-IAT 2008: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Washington, DC, USA, pp. 234–241. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  64. 64.
    Román, P.E., Velásquez, J.D.: Markov chain for modeling web user browsing behavior: statistical inference. In: XIV Latin Ibero-American Congress on Operations Research, CLAIO (2008)Google Scholar
  65. 65.
    Román, P.E., Velásquez, J.D.: Analysis of the web user behavior with a psychologically-based diffusion model. In: Procs. of the AAAI 2009 Fall Symposium on Biologically Inspired Cognitive Architectures, Arlington VA, USA, p. 72 (2009)Google Scholar
  66. 66.
    Román, P.E., Velásquez, J.D.: A dynamic stochastic model applied to the analysis of the web user behavior. In: The 2009 AWIC 6th Atlantic Web Intelligence Conference, Prague, Czech Republic, pp. 31–40 (2009) (Invited Lecture)Google Scholar
  67. 67.
    Runkler, T.A., Bezdek, J.C.: Web mining with relational clustering. International Journal of Approximate Reasoning 32(2-3), 217–236 (2003)MATHCrossRefGoogle Scholar
  68. 68.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Computer Networks and ISDN Systems, pp. 107–117 (1998)Google Scholar
  69. 69.
    Sarukkai, R.R.: Link prediction and path analysis using markov chains. In: Proceedings of the 9th international World Wide Web conference on Computer networks: the international journal of computer and telecommunications networking, pp. 377–386. North-Holland Publishing Co., Amsterdam (2000)Google Scholar
  70. 70.
    Schmidt, K.-U., Stojanovic, L., Stojanovic, N., Thomas, S.: On enriching ajax with semantics: The web personalization use case. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 686–700. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  71. 71.
    Sen, R., Hansen, M.: Predicting web user’s next access based on log data. J. Comput. Graph. Stat. 12(1), 143–155 (2003)CrossRefMathSciNetGoogle Scholar
  72. 72.
    Shi, J., Shi, F., Qiu, H.: User’s interests navigation model based on hidden markov model. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 631–634. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  73. 73.
    Snásel, V., Kudelka, M.: Web content mining focused on named objects. In (IHCI) First International Conference on Intelligent Human Computer Interaction, pp. 37–58. Springer, India (2009)CrossRefGoogle Scholar
  74. 74.
    Spiliopoulou, M., Mobasher, B., Berendt, B., Nakagawa, M.: A framework for the evaluation of session reconstruction heuristics in web-usage analysis. Informs Journal on Computing 15(2), 171–190 (2003)CrossRefGoogle Scholar
  75. 75.
    Spiliopoulou, M., Faulstich, L.: Wum: A web utilization miner. In: Atzeni, P., Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 184–203. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  76. 76.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.: Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations 2(1), 12–23 (2000)CrossRefGoogle Scholar
  77. 77.
    Takács, G., Pilászy, I., Németh, B., Tikk, D.: Major components of the gravity recommendation system. SIGKDD Explor. Newsl. 9(2), 80–83 (2007)CrossRefGoogle Scholar
  78. 78.
    Tao, Y.-H., Hong, T.-P., Lin, W.-Y., Chiu, W.-Y.: A practical extension of web usage mining with intentional browsing data toward usage. Expert Syst. Appl. 36(2), 3937–3945 (2009)CrossRefGoogle Scholar
  79. 79.
    Tao, Y.-H., Hong, T.-P., Su, Y.-M.: Web usage mining with intentional browsing data. Expert Syst. Appl. 34(3), 1893–1904 (2008)CrossRefGoogle Scholar
  80. 80.
    Vazquez, A., Gama Oliveira, J., Dezso, Z., Goh, K.-I., Kondor, I., Barabasi, A.-L.: Modeling bursts and heavy tails in human dynamics. Physical Review E 73(3), 36127 (2006)CrossRefGoogle Scholar
  81. 81.
    Vazquez, A.: Exact results for the barabasi model of human dynamics. Physical Review Letters 95(24), 248701 (2005)CrossRefGoogle Scholar
  82. 82.
    Velásquez, J.D., Yasuda, H., Aoki, T., Weber, R.: A new similarity measure to understand visitor behavior in a web site. IEICE Transactions on Information and Systems, Special Issues in Information Processing Technology for web utilization E87-D(2), 389–396 (2004)Google Scholar
  83. 83.
    Velásquez, J.D., Palade, V.: Adaptive web sites: A knowledge extraction from web data approach. IOS Press, Amsterdam (2008)Google Scholar
  84. 84.
    Velásquez, J.D., Estévez, P.A., Yasuda, H., Aoki, T., Vera, E.S.: Intelligent web site: Understanding the visitor behavior. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 140–147. Springer, Heidelberg (2004)Google Scholar
  85. 85.
    Velásquez, J.D., Weber, R., Yasuda, H., Aoki, T.: A methodology to find web site keywords. In: EEE 2004: Proceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE 2004), Washington, DC, USA, pp. 285–292. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  86. 86.
    Wang, S., Gao, W., Huang, T., Ma, J., Li, J., Xie, H.: Adaptive online retail web site based on hidden markov model. In: Lu, H., Zhou, A. (eds.) WAIM 2000. LNCS, vol. 1846, pp. 177–188. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  87. 87.
    White, R.W.: Investigating behavioral variability in web search. In: Proc. WWW, pp. 21–30 (2007)Google Scholar
  88. 88.
    White, R.W., Drucker, S.M.: Investigating behavioral variability in web search. In: WWW 2007: Proceedings of the 16th international conference on World Wide Web (2007)Google Scholar
  89. 89.
    Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)CrossRefGoogle Scholar
  90. 90.
    Xexeo, G., de Souza, J., Castro, P.F., Pinheiro, W.A.: Using wavelets to classify documents. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 1, pp. 272–278 (2008)Google Scholar
  91. 91.
    Xiao, J., Zhang, Y., Jia, X., Li, T.: Measuring similarity of interests for clustering web-users. In: ADC 2001: Proceedings of the 12th Australasian database conference, Washington, DC, USA, pp. 107–114. IEEE Computer Society, Los Alamitos (2001)CrossRefGoogle Scholar
  92. 92.
    Zhou, Y., Leung, H., Winoto, P.: Mnav: A markov model-based web site navigability measure. IEEE Trans. Softw. Eng. 33(12), 869–890 (2007)CrossRefGoogle Scholar
  93. 93.
    Zukerman, I., Albrecht, D.W., Nicholson, A.E.: Predicting users’ requests on the www. In: UM 1999: Proceedings of the seventh international conference on User modeling, Secaucus, NJ, USA, pp. 275–284. Springer-Verlag New York, Inc. (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pablo E. Román
    • 1
  • Gastón L’Huillier
    • 1
  • Juan D. Velásquez
    • 1
  1. 1.Department of Industrial EngineeringUniversity of ChileSantiagoChile

Personalised recommendations