Restricted Ambiguity of Erasing Morphisms

  • Daniel Reidenbach
  • Johannes C. Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6224)

Abstract

A morphism h is called ambiguous for a string s if there is another morphism that maps s to the same image as h; otherwise, it is called unambiguous. In this paper, we examine some fundamental problems on the ambiguity of erasing morphisms. We provide a detailed analysis of so-called ambiguity partitions, and our main result uses this concept to characterise those strings that have a morphism of strongly restricted ambiguity. Furthermore, we demonstrate that there are strings for which the set of unambiguous morphisms, depending on the size of the target alphabet of these morphisms, is empty, finite or infinite. Finally, we show that the problem of the existence of unambiguous erasing morphisms is equivalent to some basic decision problems for nonerasing multi-pattern languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic images of strings. International Journal of Foundations of Computer Science 17, 601–628 (2006)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Harju, T., Karhumäki, J.: Morphisms. In: [12], ch. 7, pp. 439–510Google Scholar
  3. 3.
    Head, T.: Fixed languages and the adult languages of 0L schemes. International Journal of Computer Mathematics 10, 103–107 (1981)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Holub, Š.: Polynomial-time algorithm for fixed points of nontrivial morphisms. Discrete Mathematics 309, 5069–5076 (2009)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with and without erasing. International Journal of Computer Mathematics 50, 147–163 (1994)MATHCrossRefGoogle Scholar
  6. 6.
    Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. Journal of Computer and System Sciences 50, 53–63 (1995)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kari, L., Mateescu, A., Păun, G., Salomaa, A.: Multi-pattern languages. Theoretical Computer Science 141, 253–268 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mateescu, A., Salomaa, A.: Patterns. In: [12], ch. 4.6, pp. 230–242Google Scholar
  9. 9.
    Reidenbach, D.: The Ambiguity of Morphisms in Free Monoids and its Impact on Algorithmic Properties of Pattern Languages. Logos Verlag, Berlin (2006)Google Scholar
  10. 10.
    Reidenbach, D.: Discontinuities in pattern inference. Theoretical Computer Science 397, 166–193 (2008)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Reidenbach, D., Schneider, J.C.: Morphically primitive words. Theoretical Computer Science 410, 2148–2161 (2009)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1. Springer, Berlin (1997)MATHGoogle Scholar
  13. 13.
    Schneider, J.C.: Unambiguous erasing morphisms in free monoids. Theoretical Informatics and Applications (RAIRO) 44, 193–208 (2010)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daniel Reidenbach
    • 1
  • Johannes C. Schneider
    • 2
  1. 1.Department of Computer ScienceLoughborough UniversityLoughboroughUnited Kingdom
  2. 2.Fachbereich InformatikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations