Fast Parsing for Boolean Grammars: A Generalization of Valiant’s Algorithm

  • Alexander Okhotin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6224)

Abstract

The well-known parsing algorithm for the context-free grammars due to Valiant (”General context-free recognition in less than cubic time”, Journal of Computer and System Sciences, 10:2 (1975), 308–314) is refactored and generalized to handle the more general Boolean grammars. The algorithm reduces construction of the parsing table to computing multiple products of Boolean matrices of various size. Its time complexity on an input string of length n is \(O(\mathit{BMM}(n) \log n)\), where \(\mathit{BMM}(n)\) is the number of operations needed to multiply two Boolean matrices of size n ×n, which is O(n2.376) as per the current knowledge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L., Booth, K.S., Preparata, F.P., Ruzzo, W.L.: Improved time and space bounds for Boolean matrix multiplication. Acta Informatica 11(1), 61–70 (1978)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzhev, I.A.: On economical construction of the transitive closure of an oriented graph. Soviet Mathematics Doklady 11, 1209–1210 (1970)MATHGoogle Scholar
  3. 3.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9(3), 251–280 (1990)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ésik, Z., Kuich, W.: Boolean fuzzy sets. International Journal of Foundations of Computer Science 18(6), 1197–1207 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kountouriotis, V., Nomikos, C., Rondogiannis, P.: Well-founded semantics for Boolean grammars. Information and Computation 207(9), 945–967 (2009)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Combinatorics 6(4), 519–535 (2001)MATHMathSciNetGoogle Scholar
  7. 7.
    Okhotin, A.: Boolean grammars. Information and Computation 194(1), 19–48 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Okhotin, A.: Generalized LR parsing algorithm for Boolean grammars. International Journal of Foundations of Computer Science 17(3), 629–664 (2006)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Okhotin, A.: Recursive descent parsing for Boolean grammars. Acta Informatica 44(3-4), 167–189 (2007)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Okhotin, A.: Unambiguous Boolean grammars. Information and Computation 206, 1234–1247 (2008)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13, 354–356 (1969)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Valiant, L.G.: General context-free recognition in less than cubic time. Journal of Computer and System Sciences 10(2), 308–314 (1975)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander Okhotin
    • 1
  1. 1.Department of Mathematics, University of TurkuAcademy of FinlandTurkuFinland

Personalised recommendations