Periodicity in Tilings

  • Emmanuel Jeandel
  • Pascal Vanier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6224)


Tilings and tiling systems are an abstract concept that arise both as a computational model and as a dynamical system. In this paper, we prove an analog of the theorems of Fagin [9] and Selman and Jones [14] by characterizing sets of periods of tiling systems by complexity classes.


Computational and structural complexity tilings dynamical systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allauzen, C., Durand, B.: Tiling Problems. In: The classical decision problem, Perspectives in Mathematical Logic, ch. Appendix A. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Balcazar, J., Diaz, J., Gabarro, J.: Structural Complexity II. Springer, Heidelberg (1988)Google Scholar
  3. 3.
    Berger, R.: The Undecidability of the Domino Problem. Memoirs of the American Mathematical Society, vol. 66. The American Mathematical Society, Providence (1966)Google Scholar
  4. 4.
    Borchert, B.: Formal Language characterizations of P, NP, and PSPACE. Journal of Automata, Languages and Combinatorics 13(3/4), 161–183 (2008)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Buchi, J.R.: Turing-Machines and the Entscheidungsproblem. Math. Annalen 148, 201–213 (1962)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Carayol, A., Meyer, A.: Context-Sensitive Languages, Rational Graphs and Determinism. Logical Methods in Computer Science 2(2), 1–24 (2006)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Chaitin, G.: The Halting Probability via Wang Tiles. Fundamenta Informaticae 86(4), 429–433 (2008)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer Monographs in Mathematics. Springer, Berlin (1995)zbMATHGoogle Scholar
  9. 9.
    Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R. (ed.) SIAM-AMS Proceedings of Complexity of Computation, vol. 7, pp. 43–73 (1974)Google Scholar
  10. 10.
    Flores, I.: Reflected Number Systems. IRE Transactions on Electronic Computers EC-5(2), 79–82 (1956)CrossRefGoogle Scholar
  11. 11.
    Gurevich, Y., Koryakov, I.: Remarks on Berger’s paper on the domino problem. Siberian Math. Journal (1972)Google Scholar
  12. 12.
    Harel, D.: Recurring Dominoes: Making the Highly Undecidable Highly Understandable. Annals of Discrete Mathematics 24, 51–72 (1985)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Immerman, N.: Nondeterministic space is closed under complementation. SIAM Journal on Computing 17(5), 935–938 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jones, N.D., Selman, A.L.: Turing machines and the spectra of first-order formulas with equality. In: STOC 1972: Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, pp. 157–167 (1972)Google Scholar
  15. 15.
    Kari, J.: The Nilpotency Problem of One-Dimensional Cellular Automata. SIAM Journal on Computing 21(3), 571–586 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput. Syst. Sci. 48(1), 149–182 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kari, J., Papasoglu, P.: Deterministic Aperiodic Tile Sets. Geometric And Functional Analysis 9, 353–369 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Knuth, D.E.: Generating all Tuples and Permutations. In: The Art of Computer Programming, vol. 4 fasc. 2. Addison-Wesley. Reading (2005)Google Scholar
  19. 19.
    Lind, D.: A zeta function for ℤd-actions. In: Proceedings of Warwick Symposium on ℤd actions. LMS Lecture Notes Series, vol. 228, pp. 433–450. Cambridge Univ. Press, Cambridge (1996)Google Scholar
  20. 20.
    Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York (1995)zbMATHCrossRefGoogle Scholar
  21. 21.
    van Emde Boas, P.: The convenience of Tilings. In: Complexity, Logic, and Recursion Theory. Lecture Notes in Pure and Applied Mathematics, vol. 187. CRC, Boca Raton (1997)Google Scholar
  22. 22.
    Wang, H.: Proving theorems by Pattern Recognition II. Bell Systems Technical Journal 40, 1–41 (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Emmanuel Jeandel
    • 1
  • Pascal Vanier
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale (LIF)Aix-Marseille Université, CNRSMarseilleFrance

Personalised recommendations