Two-Way Unary Automata versus Logarithmic Space

  • Viliam Geffert
  • Giovanni Pighizzini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6224)

Abstract

We show that each n-state unary 2nfa (a two-way nondeterministic finite automaton) can be simulated by an equivalent 2ufa (an unambiguous 2nfa) with a polynomial number of states. Moreover, if L = NL (the classical logarithmic space classes), then each unary 2nfa can be converted into an equivalent 2dfa (a deterministic two-way automaton), still keeping polynomial the number of states. This shows a connection between the standard logarithmic space complexity and the state complexity of two-way unary automata: it indicates that L could be separated from NL by proving a superpolynomial gap, in the number of states, for the conversion from unary 2NFAs to 2DFAs.

Keywords

unary regular languages finite automata state complexity logarithmic space space complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, J., Lingas, A.: On the complexity of regular languages in terms of finite automata. Tech. Rep. 304. Polish Academy of Sciences (1977)Google Scholar
  2. 2.
    Birget, J.-C.: State-complexity of finite-state devices, state compressibility and incompressibility. Math. Syst. Theory 26, 237–269 (1993)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986); Corrigendum: IBID 302, 497–498 (2003)Google Scholar
  4. 4.
    Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic automata into simpler automata. Theoret. Comput. Sci. 295, 189–203 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hopcroft, J., Ullman, J.: Introduction to automata theory, languages, and computation. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  6. 6.
    Hromkovič, J., Schnitger, G.: Nondeterminism versus determinism for two-way finite automata: generalizations of Sipser’s separation. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 439–451. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Jones, N.: Space-bounded reducibility among combinatorial problems. J. Comput. System Sci. 11, 68–85 (1975)MATHMathSciNetGoogle Scholar
  8. 8.
    Kapoutsis, C.A.: Deterministic moles cannot solve liveness. J. Aut. Lang. Combin. 12, 215–235 (2007)MATHMathSciNetGoogle Scholar
  9. 9.
    Kapoutsis, C.A.: Size complexity of two-way finite automata. In: DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Karp, R., Lipton, R.: Turing machines that take advice. Enseign. Math. 28, 191–209 (1982)MATHMathSciNetGoogle Scholar
  11. 11.
    Leung, H.: Descriptional complexity of nfa of different ambiguity. Int. J. Found. Comput. Sci. 16, 975–984 (2005)MATHCrossRefGoogle Scholar
  12. 12.
    Mereghetti, C., Pighizzini, G.: Two-way automata simulations and unary languages. J. Aut. Lang. Combin. 5, 287–300 (2000)MATHMathSciNetGoogle Scholar
  13. 13.
    Micali, S.: Two-way deterministic finite automata are exponentially more succinct than sweeping automata. Inform. Process. Lett. 12, 103–105 (1981)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18, 1263–1282 (1989)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. SIAM J. Comput. 29, 1118–1131 (2000)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sakoda, W., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proc. 10th ACM Symp. Theory of Comput (STOC), pp. 275–286 (1978)Google Scholar
  18. 18.
    Savitch, M.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. System Sci. 4, 177–192 (1970)MATHMathSciNetGoogle Scholar
  19. 19.
    Shepherdson, M.: The reduction of two-way automata to one-way automata. IBM J. Res. Develop. 3, 198–200 (1959)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Sipser, M.: Lower bounds on the size of sweeping automata. J. Comput. System Sci. 21, 195–202 (1980)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    To, A.W.: Unary finite automata vs. arithmetic progressions. Information Processing Letters 109, 1010–1014 (2009)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Viliam Geffert
    • 1
  • Giovanni Pighizzini
    • 2
  1. 1.Department of Computer ScienceP. J. Šafárik UniversityKošiceSlovakia
  2. 2.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations