MXL3: An Efficient Algorithm for Computing Gröbner Bases of Zero-Dimensional Ideals

  • Mohamed Saied Emam Mohamed
  • Daniel Cabarcas
  • Jintai Ding
  • Johannes Buchmann
  • Stanislav Bulygin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5984)

Abstract

This paper introduces a new efficient algorithm, called MXL3, for computing Gröbner bases of zero-dimensional ideals. The MXL3 is based on XL algorithm, mutant strategy, and a new sufficient condition for a set of polynomials to be a Gröbner basis. We present experimental results comparing the behavior of MXL3 to F4 on HFE and random generated instances of the MQ problem. In both cases the first implementation of the MXL3 algorithm succeeds faster and uses less memory than Magma’s implementation of F4.

Keywords

Multivariate polynomial systems Gröbner basis XL algorithm Mutant MutantXL algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, M., Bard, G.: M4RI Linear Algebra over GF(2) (2008), http://m4ri.sagemath.org/index.html
  2. 2.
    Becker, T., Kredel, H., Weispfenning, V.: Gröbner bases: a computational approach to commutative algebra, April 1993. Springer, London (1993)MATHGoogle Scholar
  3. 3.
    Brickenstein, M., Dreyer, A.: Polybori: A framework for gröbner-basis computations with boolean polynomials. Journal of Symbolic Computation 44(9), 1326–1345 (2009); Effective Methods in Algebraic GeometryMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical Institute, University of Innsbruck, Austria, 1965 (English translation in Journal of Symbolic Computation (2004)Google Scholar
  5. 5.
    Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of gröbner bases. Johannes Kepler University Linz, London, UK, vol. 72, pp. 3–21. Springer, Heidelberg (1979)Google Scholar
  6. 6.
    Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Courtois, N.T.: Experimental Algebraic Cryptanalysis of Block Ciphers (2007), http://www.cryptosystem.net/aes/toyciphers.html
  8. 8.
    Ding, J.: Mutants and its impact on polynomial solving strategies and algorithms. Privately distributed research note, University of Cincinnati and Technical University of Darmstadt (2006)Google Scholar
  9. 9.
    Ding, J., Buchmann, J., Mohamed, M.S.E., Moahmed, W.S.A., Weinmann, R.-P.: MutantXL. In: Proceedings of the 1st international conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, China, April 2008, pp. 16–22. LMIB (2008)Google Scholar
  10. 10.
    Ding, J., Carbarcas, D., Schmidt, D., Buchmann, J., Tohaneanu, S.: Mutant Gröbner Basis Algorithm. In: Proceedings of the 1st international conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, China, April 2008, pp. 23–32. LMIB (2008)Google Scholar
  11. 11.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Pure and Applied Algebra 139(1-3), 61–88 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 international symposium on Symbolic and algebraic computation (ISSAC), Lille, France, July 2002, pp. 75–83. ACM, New York (2002)CrossRefGoogle Scholar
  13. 13.
    Faugère, J.-C., Ars, G.: Comparison of XL and Gröbner basis algorithms over Finite Fields. Research Report RR-5251, Institut National de Recherche en Informatique et en Automatique, INRIA (2004)Google Scholar
  14. 14.
    Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Mohamed, M.S.E., Ding, J., Buchmann, J., Werner, F.: Algebraic Attack on the MQQ Public Key Cryptosystem. In: Proceedings of the 8th International Conference on Cryptology And Network Security (CANS 2009), Kanazawa, Ishikawa, Japan, December 2009. LNCS, Springer, Heidelberg (to appear, 2009)Google Scholar
  16. 16.
    Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving Polynomial Equations over GF(2) using an Improved Mutant Strategy. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Sugita, M., Kawazoe, M., Imai, H.: Relation between the XL Algorithm and Gröbner Basis Algorithms. Transactions on Fundamentals of Electronics, Communications and Computer Sciences (IEICE) E89-A(1), 11–18 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mohamed Saied Emam Mohamed
    • 1
  • Daniel Cabarcas
    • 2
  • Jintai Ding
    • 2
  • Johannes Buchmann
    • 1
  • Stanislav Bulygin
    • 3
  1. 1.TU Darmstadt, FB InformatikDarmstadtGermany
  2. 2.Department of Mathematical SciencesUniversity of Cincinnati, South China University of Technology 
  3. 3.Center for Advanced Security Research Darmstadt (CASED) 

Personalised recommendations