Polysemy in Controlled Natural Language Texts

  • Normunds Gruzitis
  • Guntis Barzdins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5972)


Computational semantics and logic-based controlled natural languages (CNL) do not address systematically the word sense disambiguation problem of content words, i.e., they tend to interpret only some functional words that are crucial for construction of discourse representation structures. We show that micro-ontologies and multi-word units allow integration of the rich and polysemous multi-domain background knowledge into CNL thus providing interpretation for the content words. The proposed approach is demonstrated by extending the Attempto Controlled English (ACE) with polysemous and procedural constructs resulting in a more natural CNL named PAO covering narrative multi-domain texts.


Background Knowledge Content Word Word Sense Input Text Word Sense Disambiguation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., Hart, G.: A Comparison of three Controlled Natural Languages for OWL 1.1. In: 4th International OWLED Workshop (2008)Google Scholar
  2. 2.
    Clark, P., Harrison, P., Jenkins, T., Thompson, J., Wojcik, R.H.: Acquiring and Using World Knowledge Using a Restricted Subset of English. In: 18th International FLAIRS Conference, pp. 506–511 (2005)Google Scholar
  3. 3.
    Fuchs, N.E., Kaljurand, K., Schneider, G.: Attempto Controlled English Meets the Challenges of Knowledge Representation, Reasoning, Interoperability and User Interfaces. In: 19th International FLAIRS Conference (2006)Google Scholar
  4. 4.
    Pustejovsky, J.: Type Construction and the Logic of Concepts. In: Bouillon, P., Busa, F. (eds.) The Language of Word Meaning. Cambridge University Press, Cambridge (2001)Google Scholar
  5. 5.
    Ravin, Y., Leacock, C.: Polysemy. Oxford University Press, Oxford (2000)Google Scholar
  6. 6.
    Leary, D.E. (ed.): Metaphors in the history of psychology. Cambridge University Press, Cambridge (1994)Google Scholar
  7. 7.
    Magnini, B., Strapparava, C., Pezzulo, G., Gliozzo, A.: The role of domain information in word sense disambiguation. Natural Language Engineering 8(4), 359–373 (2002)CrossRefGoogle Scholar
  8. 8.
    Web Ontology Language (OWL). W3C Recommendation (2009),
  9. 9.
    Rinaldi, F., Dowdall, J., Hess, M., Molla, D., Schwitter, R., Kaljurand, K.: Knowledge-Based Question Answering. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS (LNAI), vol. 2773, pp. 785–792. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Wilks, Y., Barnden, J., Wang, J.: Your metaphor or mine: belief ascription and metaphor interpretation. In: 12th International Joint Conference on Artificial Intelligence, pp. 945–950 (1991)Google Scholar
  11. 11.
    Lenat, D.: Cyc: A Large-Scale Investment in Knowledge Infrastructure. Communications of the ACM 38(11), 33–38 (1995)CrossRefGoogle Scholar
  12. 12.
    Fillmore, C.J., Johnson, C.R., Petruck, M.R.L.: Background to FrameNet. International Journal of Lexicography 16, 235–250 (2003)CrossRefGoogle Scholar
  13. 13.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, New York (2007)zbMATHGoogle Scholar
  14. 14.
    Banek, M., Vrdoljak, B., Tjoa, A.M.: Word Sense Disambiguation as the Primary Step of Ontology Integration. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 65–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Schwitter, R.: Creating and Querying Linguistically Motivated Ontologies. In: Knowledge Representation Ontology Workshop, Conference in Research and Practice in Information Technology, vol. 90, pp. 71–80 (2008)Google Scholar
  16. 16.
    Kaljurand, K., Fuchs, N.E.: Verbalizing OWL in Attempto Controlled English. In: 3rd International OWLED Workshop (2007)Google Scholar
  17. 17.
    SPARQL 1.1 Query and Unpdate Language for RDF. W3C Working Draft (2009),
  18. 18.
    Ontology Definition Metamodel. OMG Adopted Specification (2009),
  19. 19.
    PDDL - The Planning Domain Definition Language. Technical report, Yale Center for Computational Vision and Control (1998),
  20. 20.
    Erk, K., Pado, S.: Shalmaneser - a flexible toolbox for semantic role assignment. In: 5th International LREC Conference (2006)Google Scholar
  21. 21.
    Johansson, R., Nugues, P.: Comparing dependency and constituent syntax for frame-semantic analysis. In: 6th International LREC Conference (2008)Google Scholar
  22. 22.
    Johansson, R., Berglund, A., Danielsson, M., Nugues, P.: Automatic text-to-scene conversion in the traffic accident domain. In: 19th International Joint Conference on Artificial Intelligence, pp. 1073–1078 (2005)Google Scholar
  23. 23.
    Schubert, L.K., Hwang, C.H.: Episodic Logic meets Little Red Riding Hood: A comprehensive, natural representation for language understanding. In: Iwanska, L., Shapiro, S.C. (eds.) Natural Language Processing and Knowledge Representation: Language for Knowledge and Knowledge for Language, pp. 111–174. MIT/AAAI Press, Cambridge/Menlo Park (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Normunds Gruzitis
    • 1
  • Guntis Barzdins
    • 1
  1. 1.Institute of Mathematics and Computer ScienceUniversity of Latvia 

Personalised recommendations