Empirical Results for Pedestrian Dynamics at Bottlenecks

  • Armin Seyfried
  • Andreas Schadschneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6068)

Abstract

In recent years, several approaches for modeling pedestrian dynamics have been developed. Usually the focus is on the qualitative reproduction of empirically observed collective phenomena like the dynamical formation of lanes. Although this gives an indication of the realism of a model, for practical applications as in safety analysis reliable quantitative predictions are required. This asks for reliable empirical data. Here we discuss the current status of one of the basic scenarios, the dynamics at bottlenecks. Here there is currently no consensus even about the qualitative features of bottleneck flows.

Keywords

empirical data bottlenecks fundamental diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schadschneider, A., et al.: Evacuation dynamics: Empirical results, modeling and applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Predtechenskii, V.M., Milinskii, A.I.: Planing for foot traffic flow in buildings. Amerind Publishing, New Dehli (1978)Google Scholar
  3. 3.
    Weidmann, U.: Transporttechnik der Fussgänger. Schriftenreihe des IVT Nr. 90, ETH Zürich (1993)Google Scholar
  4. 4.
    Nelson, H.E., Mowrer, F.W.: Emergency movement. In: DiNenno, P.J. (ed.) SFPE Handbook of Fire Protection Engineering, 3rd edn. (2002)Google Scholar
  5. 5.
    Hankin, B.D., Wright, R.A.: Passenger Flow in Subways. Operational Research Quarterly 9, 81–88 (1958)CrossRefGoogle Scholar
  6. 6.
    Older, S.J.: Movement of Pedestrians on Footways in Shopping Streets. Traffic Engineering and Control 10, 160–163 (1968)Google Scholar
  7. 7.
    Navin, P.D., Wheeler, R.J.: Pedestrian flow characteristics. Traffic Engineering 39, 31–36 (1969)Google Scholar
  8. 8.
    Mori, M., Tsukaguchi, H.: A new method for evaluation of level of service in pedestrian facilities. Transp. Res. 21A(3), 223–234 (1987)Google Scholar
  9. 9.
    Helbing, D., et al.: Dynamics of Crowd Disasters: An Empirical Study. Phys. Rev. E 75, 046109 (2007)CrossRefGoogle Scholar
  10. 10.
    Seyfried, A., Boltes, M., Kähler, J., Klingsch, W., Portz, A., Rupprecht, T., Schadschneider, A., Steffen, B., Winkens, A.: Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. In: Pedestrian and Evacuation Dynamics 2008, p. 133. Springer, Heidelberg (2010) (in Print)Google Scholar
  11. 11.
    Boltes, M., Seyfried, A., Steffen, B., Schadschneider, A.: Automatic Extraction of Pedestrian Trajectories from Video Recordings. In: Pedestrian and Evacuation Dynamics 2008, p. 39. Springer, Heidelberg (2010) (in Print)Google Scholar
  12. 12.
  13. 13.
    Fruin, J.J.: Pedestrian Planning and Design. In: Metropolitan Association of Urban Designers and Environmental Planners, New York (1971)Google Scholar
  14. 14.
    Portz, A., Seyfried, A.: Modeling Stop-and-Go Waves in Pedestrian Dynamics. In: Wyrzykowski, R., et al. (eds.) PPAM 2009, Part II. LNCS, vol. 6068, pp. 561–568. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Leutzbach, W.: Introduction to the Theory of Traffic Flow. Springer, Berlin (1988)Google Scholar
  16. 16.
    Kerner, B.S.: The Physics of Traffic. Springer, Berlin (2004)Google Scholar
  17. 17.
    Hoogendoorn, S., Daamen, W.: Pedestrian Behavior at Bottlenecks. Transp. Sc. 39(2), 147–159 (2005)CrossRefGoogle Scholar
  18. 18.
    Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. J. Stat. Mech. 10, P10014 (2006)Google Scholar
  19. 19.
    Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transp. Sc. 43, 395–406 (2009)CrossRefGoogle Scholar
  20. 20.
    Dieckmann, D.: Die Feuersicherheit in Theatern, Jung, München (1911) (in German) Google Scholar
  21. 21.
    Müller, K.: Die Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Gebäuden. Dissertation, Technische Hochschule Magdeburg, Vorlage (1981)Google Scholar
  22. 22.
    Muir, H., Bottomley, D., Marrison, C.: Effects of Motivation and Cabin Configuration on Emergency Aircraft Evacuation Behavior and Rates of Egress. Int. Jour. Aviation Psychology 6, 57–77 (1996)CrossRefGoogle Scholar
  23. 23.
    Nagai, R., Fukamachi, M., Nagatani, T.: Evacuation of crawlers and walkers from corridor through an exit. Physica A 367, 449–460 (2006)CrossRefGoogle Scholar
  24. 24.
    Daamen, W., Hoogendoorn, S.: Capacity of doors during evacuation conditions. In: Proc. 1st Int. Conf. on Evacuation Modeling and Management (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Armin Seyfried
    • 1
  • Andreas Schadschneider
    • 2
  1. 1.Jülich Supercomputing CentreForschungszentrum JülichJülichGermany
  2. 2.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations