High-Performance Ocean Color Monte Carlo Simulation in the Geo-info Project

  • Tamito Kajiyama
  • Davide D’Alimonte
  • José C. Cunha
  • Giuseppe Zibordi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6068)


The Geo-Info project aims to provide Geoscience experts with software toolkits tailored for selected target application domains. Within this framework, high-performance computing (HPC) solutions are here applied to optimize a Monte Carlo (MC) code to support Ocean Color (OC) investigations. The present paper introduces the Geo-Info project, describes the HPC solutions applied for the OC MC case study, and gives early performance results focusing on runtime, speedup, and parallel efficiency.


Monte Carlo Monte Carlo Simulation Ocean Color Monte Carlo Code Parallel Execution Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mobley, C.D.: Light and Water: Radiative Transfer in Natural Waters. Academic Press, London (1994)Google Scholar
  2. 2.
    Leathers, R.A., Downes, T.V., Davis, C.O., Mobley, C.D.: Monte Carlo radiative transfer simulations for ocean optics: A practical guide. Technical report, Naval Research Laboratory, NRL/MR/5660–04–8819, Washington, DC (September 2004)Google Scholar
  3. 3.
    Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: An extensible system for design and execution of scientific workflows. In: Proc. 16th Intl. Conf. on Scientific and Statistical Database Management (SSDBM 2004), pp. 21–23 (June 2004)Google Scholar
  4. 4.
    Taylor, I., Shields, M., Wang, I., Harrison, A.: Visual Grid workflow in Triana. Journal of Grid Computing 3(3-4), 153–169 (2005)CrossRefGoogle Scholar
  5. 5.
    Sarmiento, J.L., Slater, R., Barber, R., Bopp, L., Doney, S.C., Hirst, A.C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S.A., Stouffer, R.: Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles 18 (2004)Google Scholar
  6. 6.
    Hu, C., Chen, Z., Clayton, T.D., Swarzenski, P., Brock, J.C., Muller-Karger, F.E.: Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL. Remote Sensing of Environment 93(3), 423–441 (2004)CrossRefGoogle Scholar
  7. 7.
    McClain, C.R., Feldman, G.C., Hooker, S.B.: An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep Sea Research Part II: Topical Studies in Oceanography 51(1-3), 5–42 (2004); Views of Ocean Processes from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Mission: Volume 1 Google Scholar
  8. 8.
    Zibordi, G., Berthon, J.F., Doyle, J.P., Grossi, S., van der Linde, D., Targa, C., Alberotanza, L.: Coastal Atmosphere and Sea Time Series (COASTS), Part 1: A Tower-Based, Long-Term Measurement Program, NASA Goddard Space Flight Center, SeaWiFS Postlaunch Technical Report Series, TM–2002–206892, Greenbelt, MD, June 2002, vol. 19, pp. 1–29 (2002)Google Scholar
  9. 9.
    D’Alimonte, D., Zibordi, G.: The JRC Data Processing System. NASA Goddard Space Flight Center, SeaWiFS Postlaunch Technical Report Series, TM–2001–206892 Greenbelt, MD, vol. 15, pp. 52–56 (May 2001)Google Scholar
  10. 10.
    Zaneveld, J.R., Boss, E., Hwang, P.: The influence of coherent waves on the remotely sensed reflectance. Optics Express 9(6), 260–266 (2001)CrossRefGoogle Scholar
  11. 11.
    Zibordi, G., D’Alimonte, D., Berthon, J.F.: An evaluation of depth resolution requirements for optical profiling in coastal waters. Journal of Atmospheric and Oceanic Technology 21(7), 1059–1073 (2004)CrossRefGoogle Scholar
  12. 12.
    Henyey, L., Greenstein, J.: Diffuse radiation in the galaxy. Astrophysical Journal 93, 70–83 (1941)CrossRefGoogle Scholar
  13. 13.
    Colombet, L., Desbat, L.: Speedup and efficiency of large-size applications on heterogeneous networks. Theoretical Computer Science 196, 31–44 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tamito Kajiyama
    • 1
  • Davide D’Alimonte
    • 2
  • José C. Cunha
    • 1
  • Giuseppe Zibordi
    • 3
  1. 1.CITI, Departamento de Informática, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.CENTRIA, Departamento de Informática, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  3. 3.Global Environment Monitoring Unit, Joint Research CentreIspraItaly

Personalised recommendations