Parallel Implementation of a Steady State Thermal and Hydraulic Analysis of Pipe Networks in OpenMP

  • Mykhaylo Fedorov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6068)


The considerable computation time of a practical application of sequential algorithms for simulating thermal and flow distribution in pipe networks is the motivating factor to study their parallel implementation. The mathematical model formulated and studied in the paper requires the solution of a set of nonlinear equations, which are solved by the Newton-Raphson method. An object-oriented solver automatically formulates the equations for networks of an arbitrary topology. The hydraulic model that is chosen as a benchmark consists of nodal flows and loop equations. A general decomposition algorithm for analysis of flow and temperature distribution in a pipe network is presented, and results of speedup of its parallel implementation are demonstrated.


pipe networks steady state flow and thermal analysis parallel implementation OpenMP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kondrashenko, V., Vinnichuk, S., Fedorov, M.: Simulation of Gas and Liquid Distributing Systems. Naukova Dumka, Kiev (1990) (in Russian)Google Scholar
  2. 2.
    Massoud, M.: Engineering Thermofluids. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Idelchik, I.E.: Handbook of Hydraulic Resistances. Machynostrojenije, Moscow (1992) (in Russian)Google Scholar
  4. 4.
    Fedorov, M.: On Software Design of Thermal Systems Steady State Control. Polish J. Environm. Stud. 4C, 279–283 (2008)Google Scholar
  5. 5.
    Donachie, R.P.: Digital Program for Water Network Analysis. J. Hydraulics Div. 100, 393–403 (1974)Google Scholar
  6. 6.
    Chandrashekar, M.: Extended Set of Components in Pipe Networks. J. Hydraulic Div. 106, 133–149 (1980)Google Scholar
  7. 7.
    Nogueira, A.C.: Steady-State Fluid Network Analysis. J. Hydraulic Eng. 119(3), 431–436 (1993)CrossRefGoogle Scholar
  8. 8.
    Nielsen, B.N.: Methods for Analyzing Pipe Networks. J. Hydraulic Eng. 115(2), 139–157 (1989)CrossRefGoogle Scholar
  9. 9.
    Altman, T., Boulos, P.F.: Convergence of Newton Method in Nonlinear Network Analysis. Mathl. Comput. Modelling 21(4), 35–41 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chandrashekar, M.: Extended Set of Components in Pipe Networks. J. Hydraulic Div. 106, 133–149 (1980)Google Scholar
  11. 11.
    Evdokimov, A.G.: Optimal Problems of Engineering Networks. Wyzsha Shkola, Charkov (1976) (in Russian)Google Scholar
  12. 12.
    Merenkov, A.P., Chasilev, V.J.: Theory of Hydraulic Circuits. Nauka, Moscow (1985) (in Russian)Google Scholar
  13. 13.
    Larock, B.E., Jeppson, R.W., Watters, G.Z.: Hydraulics of Pipeline Systems. CRC Press, Boca Raton (2000)Google Scholar
  14. 14.
    Osiadacz, A.J.: Steady-state Simulation of Gas Networks. Fluid systems Sp., Warszawa (2001) (in Polish)Google Scholar
  15. 15.
    Sennikova, E.V., Sidler, V.G.: Mathematical Simulation and Optimization of Evolving Heat Supply Systems. Nauka, Novosibisk (1987) (in Russian)Google Scholar
  16. 16.
    Stevanovic, V.D., Prica, S., Maslovaric, B., Zivkovic, B., Nikodijevic, S.: Efficient Numerical Method for District Heating System Hydraulics. Energy Conversion & Management 48, 1536–1543 (2007)CrossRefGoogle Scholar
  17. 17.
    Boulos, P.F., Wood, D.J.: Explicit Calculation of Pipe Network Parameters. J. Hydraulic Eng. 116, 1329–1344 (1990a)CrossRefGoogle Scholar
  18. 18.
    Fedorov, M.: Automation of Mathematical Model Construction for the Analysis of Heat Regimes of Heat Exchanger Systems by the Method of Gauss Convolution. Electronic Modeling 22(6), 19–25 (2000) (in Russian); Engineering Simulation vol.18, pp. 727–734 (2001) (English translation)Google Scholar
  19. 19.
    Fedorov, M.: Steady-State Simulation of Heat Exchanger Networks. Electronic Modeling 24(1), 101–111 (2002) (in Russian)Google Scholar
  20. 20.
    Filho, L.O.F., Queiroz, E.M., Costa, A.L.H.: A Matrix Approach for Steady-State Simulation of Heat Exchanger Networks. Applied Thermal Eng. 27, 2385–2393 (2007)CrossRefGoogle Scholar
  21. 21.
    Fedorov, M.: Thermal Modes Simulation of Heat Exchanger Networks Having Turbo-machines. In: Proceedings of the Int. Conf. on Marine Technology IV, pp. 309–314. WIT Press, Southampton (2001)Google Scholar
  22. 22.
    Čiegis, R., Čiegis, R., Meilūnas, M., Jankevičiūtė, G., Starikovičius, V.: Parallel mumerical algorithm for optimization of electrical cables. Mathematical Modelling and Analysis 13(4), 471–482 (2008)zbMATHCrossRefGoogle Scholar
  23. 23.
    OpenMP Standard,
  24. 24.
    Altschul, A.D.: Hydraulic Resistances. Nedra, Moscow (1970) (in Russian)Google Scholar
  25. 25.
    Kanevets, G.E.: Heat Exchangers and Heat Exchanger Systems. Naukowa Dumka, Kiev (1982) (in Russian)Google Scholar
  26. 26.
    Bialecki, R.A., Kruczek, T.: Frictional Diathermal Flow of Steam in a Pipeline. Chem. Eng. Sc. 51(19), 4369–4378 (1996)CrossRefGoogle Scholar
  27. 27.
    Dennis, J., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)zbMATHGoogle Scholar
  28. 28.
    Rice, J.R.: Matrix computations and mathematical software. McGraw-Hill, New York (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mykhaylo Fedorov
    • 1
  1. 1.Computer Science DepartmentWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations