An Orthogonal Matching Pursuit Algorithm for Image Denoising on the Cell Broadband Engine

  • Dominik Bartuschat
  • Markus Stürmer
  • Harald Köstler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6067)


Patch-based approaches in imaging require heavy computations on many small sub-blocks of images but are easily parallelizable since usually different sub-blocks can be treated independently. In order to make these approaches useful in practical applications efficient algorithms and implementations are required. Newer architectures like the Cell Broadband Engine Architecture (CBEA) make it even possible to come close to real-time performance for moderate image sizes. In this article we present performance results for image denoising on the CBEA. The image denoising is done by finding sparse representations of signals from a given overcomplete dictionary and assuming that noise cannot be represented sparsely. We compare our results with a standard multicore implementation and show the gain of the CBEA.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Starck, J., Elad, M., Donoho, D.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing 14(10), 1570–1582 (2005)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Tropp, J.: Topics in Sparse Approximation. PhD thesis, The University of Texas at Austin (2004)Google Scholar
  3. 3.
    Aharon, M., Elad, M., Bruckstein, A.: On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebra and Its Applications 416(1), 48–67 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Borsdorf, A., Raupach, R., Hornegger, J.: Wavelet based Noise Reduction by Identification of Correlation. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 21–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Borsdorf, A., Raupach, R., Hornegger, J.: Separate CT-Reconstruction for 3D Wavelet Based Noise Reduction Using Correlation Analysis. In: Yu, B. (ed.) IEEE NSS/MIC Conference Record., pp. 2633–2638 (2007)Google Scholar
  6. 6.
    Mayer, M., Borsdorf, A., Köstler, H., Hornegger, J., Rüde, U.: Nonlinear Diffusion vs. Wavelet Based Noise Reduction in CT Using Correlation Analysis. In: Lensch, H., Rosenhahn, B., Seidel, H.P., Slusallek, P., Weickert, J. (eds.) Vision, Modeling, and Visualization 2007, pp. 223–232 (2007)Google Scholar
  7. 7.
    Bartuschat, D., Borsdorf, A., Köstler, H., Rubinstein, R., Stürmer, M.: A parallel K-SVD implementation for CT image denoising. Technical report, Department of Computer Science 10 (System Simulation), Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (2009)Google Scholar
  8. 8.
    Köstler, H.: A Multigrid Framework for Variational Approaches in Medical Image Processing and Computer Vision. Verlag Dr. Hut, München (2008)Google Scholar
  9. 9.
    Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constructive Approximation 13(1), 57–98 (1997)Google Scholar
  10. 10.
    Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient Implementation of the K-SVD Algorithm and the Batch-OMP MethodGoogle Scholar
  11. 11.
    Donoho, D.L., Elad, M.: Optimally sparse representations in general (non-orthogonal) dictionaries via l 1 minimization. Proc. Nat. Acad. Sci. 100, 2197–2202 (2002)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, 2nd edn., vol. 147. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process 15(12), 3736–3745 (2006)CrossRefMathSciNetGoogle Scholar
  14. 14.
    IBM Corporation Rochester MN, USA: Programming Tutorial, Software Development Kit for Multicore Acceleration, Version 3.0 (2007)Google Scholar
  15. 15.
    Gschwind, M.: The Cell Broadband Engine: Exploiting Multiple Levels of Parallelism in a Chip Multiprocessor. International Journal of Parallel Programming 35(3), 233–262 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dominik Bartuschat
    • 1
  • Markus Stürmer
    • 1
  • Harald Köstler
    • 1
  1. 1.University of Erlangen-NurembergErlangenGermany

Personalised recommendations