Advertisement

An Exploration of CUDA and CBEA for Einstein@Home

  • Jens Breitbart
  • Gaurav Khanna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6067)

Abstract

We present a detailed approach for making use of two new computer hardware architectures–CBEA and CUDA–for accelerating a scientific data-analysis application (Einstein@Home). Our results suggest that both the architectures suit the application quite well and the achievable performance in the same software developmental time-frame is nearly identical.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D.P.: Boinc: A system for public-resource computing and storage. In: GRID 2004: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, Washington, DC, USA, pp. 4–10. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  2. 2.
    Breitbart, J.: Case studies on gpu usage and data structure design. Master’s thesis, University of Kassel (2008)Google Scholar
  3. 3.
  4. 4.
    Scherl, H., Keck, B., Kowarschik, M., Hornegger, J.: Fast GPU-Based CT Reconstruction using the Common Unified Device Architecture (CUDA). In: Frey, E.C. (ed.) Nuclear Science Symposium, Medical Imaging Conference 2007, NSS 2007. Nuclear Science Symposium Conference Record, vol. 6, pp. 4464–4466. IEEE, Los Alamitos (2007)Google Scholar
  5. 5.
    Christen, M., Schenk, O., Messmer, P., Neufeld, E., Burkhart, H.: Accelerating Stencil-Based Computations by Increased Temporal Locality on Modern Multi- and Many-Core Architectures (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jens Breitbart
    • 1
  • Gaurav Khanna
    • 2
  1. 1.Research Group Programming Languages / MethodologiesUniversität KasselKasselGermany
  2. 2.Physics DepartmentUniversity of Massachusetts at DartmouthNorth DartmouthUSA

Personalised recommendations