Particle Model of Tumor Growth and Its Parallel Implementation

  • Rafal Wcisło
  • Witold Dzwinel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6067)


We present a concept of a parallel implementation of a novel 3-D model of tumor growth. The model is based on particle dynamics, which are building blocks of normal, cancerous and vascular tissues. The dynamics of the system is driven also by the processes in microscopic scales (e.g. cell life-cycle), diffusive substances – nutrients and TAF (tumor angiogenic factors) – and blood flow. We show that the cell life-cycle (particle production and annihilation), the existence of elongated particles, the influence of continuum fields and blood flow in capillaries, makes the model very tough for parallelization in comparison to standard MD codes. We present preliminary timings of our parallel implementation and we discuss the perspectives of our approach.


Parallel Implementation Particle Model Particle Dynamic Necrotic Region Tumor Growth Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folkman, J.: Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971)Google Scholar
  2. 2.
    Bellomo, N., de Angelis, E., Preziosi, L.: Multiscale Modeling and Mathematical Problems Related to Tumor Evolution and Medical Therapy. J. Theor. Med. 5(2), 111–136 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Preziozi, L. (ed.): Cancer modelling and simulation, p. 426. Chapman & Hall/CRC Mathematical Biology & Medicine (2003)Google Scholar
  4. 4.
    Mantzaris, N., Webb, S., Othmer, H.G.: Mathematical Modeling of Tumor-induced Angiogenesis. J. Math. Biol. 49(2), 1416–1432 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chaplain, M.A.J.: Mathematical modelling of angiogenesis. J. Neuro-Oncol 50, 37–51 (2000)CrossRefGoogle Scholar
  6. 6.
    Wcisło, R., Dzwinel, W.: Particle based model of tumor progression stimulated by the process of angiogenesis. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part II. LNCS, vol. 5102, pp. 177–186. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Wcisło, R., Dzwinel, W., Yuen, D.A., Dudek, A.Z.: A new model of tumor progression based on the concept of complex automata driven by particle dynamics. Journal of Molecular Modeling (2009) (in Press)Google Scholar
  8. 8.
    Dzwinel, W., Alda, W., Kitowski, J., Yuen, D.A.: Using discrete particles as a natural solver in simulating multiple-scale phenomena. Molecular Simulation 20(6), 361–384 (2000)CrossRefGoogle Scholar
  9. 9.
    Kadau, K., Germann, T.C., Lomdahl, P.S.: Large-scale molecular-dynamics simulation of 19 billion particles. International Journal of Modern Physics C 15(1), 193–201 (2004)CrossRefGoogle Scholar
  10. 10.
    Dzwinel, W., Alda, W., Pogoda, M., Yuen, D.A.: Turbulent mixing in the microscale. Physica D 137, 157–171 (2000)CrossRefGoogle Scholar
  11. 11.
    Boryczko, K., Dzwinel, W., Yuen, D.A.: Parallel Implementation of the Fluid Particle Model for Simulating Complex Fluids in the Mesoscale. Concurrency and Computation: Practice and Experience 14, 1–25 (2002)CrossRefGoogle Scholar
  12. 12.
    Boryczko, K., Dzwinel, W., Yuen, D.A.: Modeling Heterogeneous Mesoscopic Fluids in Irregular Geometries using Shared Memory Systems. Molecular Simulation 31(1), 45–56 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rafal Wcisło
    • 1
  • Witold Dzwinel
    • 1
  1. 1.Institute of Computer ScienceAGH University of Science and TechnologyCracowPoland

Personalised recommendations