Advertisement

Lupinus

  • Bogdan Wolko
  • Jon C. Clements
  • Barbara Naganowska
  • Matthew N. Nelson
  • Hua’an Yang
Chapter

Abstract

Lupinus genus is one of the most diverse and widespread taxonomic groups of flowering plants. Its wild species occur naturally in the Mediterranean region including areas of northern Africa and in North and South America. During early time of colonization, many of them were introduced to southern Africa and Australia. Apart from interest in lupins as ornamental plants, some species were used in ancient agriculture for seed, green manure, or forage. Only a few of them were fully domesticated in the latter half of the twentieth century and became important crop plants. The agricultural potential of three of them (L. albus, L. angustifolius and L. luteus) only recently have gained acceptance of agricultural market. Despite the measurable progress in domestication and providing of lupins as a source of high-protein feed and food product, they are still considered as a neglected crop on the worldwide scale.

Further progress in improvement of lupin crops or domestication of additional lupin species depends on extension of basic research of the lupin genome. Substantial progress has been made in this area in recent years. The phylogeny and evolutionary aspects of relationships among lupin taxa were investigated using whole genome size differences and selected gene sequence variability. New saturated genetic maps containing many sequence-defined markers and loci of domesticated traits were constructed, and some comparative mapping approaches showed synteny extent among lupin and model species genomes. Cytogenetic techniques such as FISH and PRINS were used for identification of specific chromosomes and their integration with linkage groups of genetic map. The cDNA and BAC libraries have become tools for partial sequencing of interesting genome regions as well as identification and cloning of genes. Basic knowledge on lupin genome structure and organization has provided an opportunity for searching for markers linked with agricultural traits and support the traditional breeding with the selection of desirable genotypes.

Keywords

Bacterial Artificial Chromosome Cucumber Mosaic Virus Bacterial Artificial Chromosome Clone Bacterial Artificial Chromosome Library World Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adhikari K, Buirchell B, Sweetingham M, Berlandier FA (2003) Development of aphid tolerant yellow lupins in Western Australia. In: Crop updates 2003. Department of Agriculture, Western Australia, Australia, pp 220–225Google Scholar
  2. Adhikari K, Buirchell B, Stefanova K (2006a) Outcrossing and isolation distance in yellow lupins. In: van Santen E, Hill GD (eds) Mexico, where old and new world lupins meet. Proceedings of the 11th international lupin conference, 4–9 May 2005, Guadalajara, Jalisco, Mexico – Canterbury, New Zealand, pp 47–49Google Scholar
  3. Adhikari K, Buirchell B, Sweetingham M, Thomas G (2006b) Development of anthracnose resistant L. albus in Western Australia. In: van Santen E, Hill GD (eds) Mexico, where old and new world lupins meet. Proceedings of the 11th international lupin conference, 4–9 May 2005, Guadalajara, Jalisco, Mexico – Canterbury, New Zealand, pp 57–61Google Scholar
  4. Ainouche A, Bayer RJ (1999) Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Am J Bot 86:590–607PubMedGoogle Scholar
  5. Ainouche A, Bayer RJ (2000) Genetic evidence supports the new Anatolian lupine accession, Lupinus anatolicus, as an Old World “rough-seeded” lupine (section Scabrispermae) related to L. pilosus. Folia Geobot Phytotaxon 35:83–95Google Scholar
  6. Alami IT, Papineau J, Huyghe C, Al-Faiz C (2004) Collection of the Lupinus genus in Morocco. In: van Santen E, Hill GD (eds) Wild and cultivated Lupins from the tropics to the poles. Proceedings of the 10th international lupin conference, 19–24 June 2002, Iceland, pp 64–66Google Scholar
  7. Allen ON, Allen EK (1981) The Leguminosae: a source book of characteristics, uses, and nodulation. MacMillan, LondonGoogle Scholar
  8. Atkins CA, Smith PMC (1997) Genetic transformation and regeneration of legumes. In: Legocki A, Bothe H, Puhler A (eds) Biological fixation of nitrogen for ecology and sustainable agriculture. Springer, Berlin, pp 283–304Google Scholar
  9. Atkins CA, Pate JS, Layzell DB (1979) Assimilation and transport of nitrogen in non-nodulated (NO3-grown) Lupinus albus L. Plant Physiol 64:1078–1082PubMedGoogle Scholar
  10. Atkins CA, Smith PMC, Gupta S, Jones MGK, Caligari PDS (1998) Genetics, cytology and biotechnology. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CABI, Oxon, pp 67–92Google Scholar
  11. Attucci S, Aitken SM, Gulick PJ, Ibrahim RK (1995) Farnesyl pyrophosphate synthase from white lupin: molecular cloning, expression, and purification of the expressed protein. Arch Biochem Biophys 321(2):493–500PubMedGoogle Scholar
  12. Babaoglu M (2000) Protoplast isolation in lupin (Lupinus mutabilis Sweet): determination of optimum explant sources and isolation conditions. Turk J Bot 24:177–185Google Scholar
  13. Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918PubMedGoogle Scholar
  14. Barkholt V, Jensen AL (1989) Amino acid analysis: determination of cysteine plus half-cystine in proteins after hydrochloric acid hydrolysis with a disulfide compound as additive. Anal Biochem 177:318–322PubMedGoogle Scholar
  15. Barlow P (1981) RBG Kew angiosperm DNA C-values database. http://www.rbgkew.org.uk/cvalues/html/cvalOrigReference.html#346
  16. Bennett MD, Leitch IJ (2003) Angiosperm DNA C-values database (released 4.0, Jan 2003). http://www.rbgkew.org.uk/cval/homepage.html
  17. Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90PubMedGoogle Scholar
  18. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274:227–274PubMedGoogle Scholar
  19. Berger JD, Adhikari KN, Wilkinson D, Buirchell BJ, Sweetingham MW (2008a) Ecogeography of the Old World lupins. 1. Ecotypic variation in yellow lupin (Lupinus luteus L.). Aust J Agric Res 59:691–701Google Scholar
  20. Berger J, Buirchell B, Luckett D, Palta J, Ludwig C, Shrestha D (2008b) G x E analysis of narrow-leafed lupin historical trials indicates little specific adaptation among Australian cultivars. In: Palta JA, Berger JB (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 317–320Google Scholar
  21. Berger JD, Ludwig C, Buirchell BJ (2008c) Ecogeography of the old world lupins: characterizing the habitat range. In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 355–361Google Scholar
  22. Berlandier FA, Sweetingham MW (2003) Aphid damage causes large losses in susceptible lupin cultivars. Aust J Exp Agric 43:1357–1362Google Scholar
  23. Bernatzky R, Tanksley SD (1986) Towards a saturated linkage map of tomato based on isozymes and random cDNA sequences. Genetics 112:887–898PubMedGoogle Scholar
  24. Bertioli D, Moretzsohn M, Madsen L, Sandal N, Leal-Bertioli S, Guimaraes P, Hougaard B, Fredslund J, Schauser L, Nielsen A, Sato S, Tabata S, Cannon S, Stougaard J (2009) An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10:45PubMedGoogle Scholar
  25. Blanco GO (1982) Genetic variability of Tarwi (Lupinus mutabilis Sweet). In: Gross R, Bunting ES (eds) Agricultural and nutritional aspects of lupines. Proceedings of the 1st international lupine workshop, Lima-Cuzco, Peru, 12–21 April 1980. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), Eschborn, pp 33–49Google Scholar
  26. Boersma JG, Pallotta M, Li CD, Buirchell BJ, Sivasithamparam K, Yang H (2005) Construction of a genetic linkage map using MFLP and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 10:331–344PubMedGoogle Scholar
  27. Boersma JG, Buirchell BJ, Sivasithamparam K, Yang H (2007a) Development of a sequence-specific marker linked to the Ku gene which removes the vernalization requirement in narrow-leafed lupin. Plant Breed 126:306–309Google Scholar
  28. Boersma JG, Buirchell BJ, Sivasithamparam K, Yang H (2007b) Development of a PCR marker tightly linked to mollis, the gene that controls seed dormancy in Lupinus angustifolius L. Plant Breed 126:612–616Google Scholar
  29. Boersma JG, Buirchell BJ, Sivasithamparam K, Yang H (2007c) Development of two sequence-specific PCR markers linked to the le gene that reduces pod shattering in narrow-leafed Lupin (Lupinus angustifolius L.). Genet Mol Biol 30:623–629Google Scholar
  30. Boersma JG, Li C, Leśniewska K, Sivasithamparam K, Yang H (2008) Identification of quantitative trait loci (QTLs) influencing early vigour, height, flowering date, and seed size and their implications for breeding of narrow-leafed lupin (Lupinus angustifolius L.). Aust J Agric Res 59:527–535Google Scholar
  31. Boersma JG, Nelson M, Sivasithamparam K, Yang H (2009) Development of sequence-specific PCR markers linked to the Tardus gene that reduces pod shattering in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 23:259–267Google Scholar
  32. Brand JD, Tang C, Rathjen AJ (2002) Screening rough-seeded lupins (Lupinus pilosus Murr. and Lupinus atlanticus Glads.) for tolerance to calcareous soils. Plant Soil 245:261–275Google Scholar
  33. Brennan RF, Bolland MDA (2003) Lupinus luteus cv. Wodjil takes up more phosphorus and cadmium than Lupinus angustifolius cv. Kalya. Plant Soil 248:167–185Google Scholar
  34. Brien SJ, Cowling WA, Potter RH, Jones RAC, Jones MGK (2000) A molecular marker for early maturity (Ku) and marker-assisted breeding of Lupinus angustifolius. In: van Santen E, Wink M, Weissmann S, Romer P (eds) Lupin, an ancient crop for the new millennium. Proceedings of the 9th international lupin conference, 20–24 June 1999. Klink/Muritz, Germany, pp 115–117Google Scholar
  35. Brillouet JM, Riochet D (1983) Cell wall polysaccharides and lignin in cotyledons and hulls of seeds from various lupin (Lupinus L.) species. J Sci Food Agric 34:861–868Google Scholar
  36. Brücher H (1968) Die genetischen Reserven Südamerikas für die Kulturpflanzenzüchtung. Theor Appl Genet 38:9–22 (in German)Google Scholar
  37. Brummund M (2000) History of lupin research and development in Germany from 1945 until 1990. In: van Santen E, Wink M, Weissmann S, Romer P (eds) Lupin, an ancient crop for the new millenium. Proceedings of the 9th international lupin conference, 20–24 June 1999. Klink/Muritz, Germany, pp 6–13Google Scholar
  38. Buirchell BJ (1992) Collecting wild Lupinus spp. in Morocco. FAO/IBPGR Plant Genet Resour Newsl 90:36–39Google Scholar
  39. Buirchell BJ (2008) Narrow-leafed lupin breeding in Australia – where to from here? In: Palta JA, Berger JB (eds) Lupins for Health and Wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 226–230Google Scholar
  40. Buirchell BJ, Cowling WA (1992) Domestication of rough-seeded lupins. J Agric West Aust 33:131–137Google Scholar
  41. Buirchell BJ, Cowling WA (1998) Genetic resources in lupins. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants. Biology: production and utilization. CABI, Oxon, pp 41–66Google Scholar
  42. Caetano-Anolles G (1997) Molecular dissection and improvement of the nodule symbiosis in legumes. Field Crops Res 53:47–68Google Scholar
  43. Caligari PDS, Romer P, Rahim MA, Huyghe C, Neves-Martins J, Sawicka-Sienkiewicz EJ (2000) The potential of Lupinus mutabilis as a crop. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Proceedings of the 3rd international food legumes research conference, Kluwer, Dordrecht, pp 569–573Google Scholar
  44. Carstairs SA, Buirchell BJ, Cowling WA (1992) Chromosome number, size and interspecific crossing ability of three Old World lupins, Lupinus princei Harms, L. atlanticus Gladstones and L. digitatus Forskal, and implications for cyto-systematic relationships among the rough-seeded lupins. J R Soc West Aust 75:83–88Google Scholar
  45. Chamber MA, Delgardo MJ (1986) Interaction between combined nitrogen and N2 fixation in several lupin species. In: Department of Agriculture Western Australia, South Perth, Proceedings of the 4th international lupin conference 15–22 Aug 1986, Geraldton, Australia, pp 309Google Scholar
  46. Cheng Y, Jones RAC (2000) Biological properties of necrotic and non-necrotic strains of bean yellow mosaic virus in cool season grain legumes. Ann Appl Biol 136:215–227Google Scholar
  47. Cheng Y, Jones RAC, Thackray DJ (2002) Deploying strain specific hypersensitive resistance to diminish temporal virus spread. Ann Appl Biol 140:69–79Google Scholar
  48. Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502PubMedGoogle Scholar
  49. Christiansen JL, Raza S, Ortiz R (1999) White lupin (Lupinus albus L.) germplasm collection and preliminary in situ diversity assessment in Egypt. Genet Resour Crop Evol 46:169–174Google Scholar
  50. Christiansen JL, Raza S, Jornsgard B, Mahmoud SA, Ortiz R (2000) Potential of landrace germplasm for genetic enhancement of white lupin in Egypt. Genet Resour Crop Evol 47:425–430Google Scholar
  51. Clements JC, Cowling WA (1990) Summary of wild and semi-domesticated lupin accessions introduced to Australia from 1974 to 1989. Aust Plant Intro Rev 21:1–14Google Scholar
  52. Clements JC, White PF, Buirchell BJ (1993) The root morphology of Lupinus angustifolius in relation to other Lupinus species. Aus J Agric Res 44:1367–1375Google Scholar
  53. Clements JC, Cowling WA (1994) Patterns of morphological diversity in relation to geographical origins of wild Lupinus angustifolius from the Aegean region. Genet Resour Crop Evol 41:109–112Google Scholar
  54. Clements JC, Cowling WA, Buirchell BJ (1996) Relationship between morphological variation and geographical origin or selection history in Lupinus pilosus. Plant Breed 115:16–22Google Scholar
  55. Clements JC, Dracup M, Galwey NW (2002) Effect of genotype and environment on proportion of seed hull and pod wall in lupin. Aust J Agric Res 53:1147–1154Google Scholar
  56. Clements JC, Zvyagin AV, Silva KKMBD, Wanner T, Sampson DD, Cowling WA (2004) Optical coherence tomography as a novel tool for non-destructive measurement of the hull thickness of lupin seeds. Plant Breed, 123:266–270Google Scholar
  57. Clements JC, Buirchell BJ, Yang H, Smith PMC, Sweetingham MW, Smith CG (2005a) Chapter 9: Lupin. In: Singh R, Jauhar P (eds) Genetic resources, chromosome engineering, and crop improvement, series-II grain legumes. CRC, Boca Raton, FL, pp 231–323Google Scholar
  58. Clements JC, Dracup M, Buirchell BJ, Smith CG (2005b) Variation for hull and pod wall percentage and other traits in a germplasm collection and historical cultivars of lupins. Aust J Agric Res 56:75–83Google Scholar
  59. Clements JC, Ma Q, Pate JS (2006) A high chlorophyll genotype in Lupinus angustifolius L. In: van Santen E, Hill GD (eds) Wild and cultivated lupins from the tropics to the poles. Proceedings of the 10th international lupin conference, 19–24 June 2002, Laugarvatn, Iceland, pp 18–20Google Scholar
  60. Clements JC, Prilyuk L, Quealy J, Francis G (2008) Interspecific crossing among the new world lupin species for L. mutabilis crop improvement. In: Palta JA, Berger JB (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference 14–18 Sept 2008, Fremantle, Western Australia, pp 324–327Google Scholar
  61. Clements JC, Chong L, Quealy J, Prilyuk L, Yang H, Francis G, Buirchell BJ (2009) Interspecific hybrids between Lupinus angustifolius and L. luteus – an avenue to increase the value of narrow-leafed lupin in Australia. SABRAO J Breed Genet 41 (Spl Suppl)Google Scholar
  62. Conterato IF, Schifino-Wittmann MT (2006) New chromosome numbers, meiotic behaviour and pollen fertility in American taxa of Lupinus (Leguminosae): contributions to taxonomic and evolutionary studies. Bot J Linn Soc 150:229–240Google Scholar
  63. Cowling WA (2001) Lupinus L. In: Maxted N, Bennet SJ (eds) Plant genetic resources of legumes in the Mediterranean. Kluwer, Dordrecht, pp 191–203Google Scholar
  64. Cowling WA, Clements JC (1993) Association between collection site soil pH and chlorosis in Lupinus angustifolius induced by a fine-textured, alkaline soil. Aust J Agric Res 44:1821–1836Google Scholar
  65. Cowling WA, Gladstones JS (2000) Lupin breeding in Australia. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Proceedings of the 3rd international food legumes research conference. Kluwer, Dordrecht, pp 541–547Google Scholar
  66. Cowling WA, Wood PM (1989) Resistance to Phomopsis stem and pod blight of narrow-leafed lupin in a range of environments and its association with reduced Phomopsis seed infection. Aust J Exp Agric 29:43–50Google Scholar
  67. Cowling WA, Sweetingham MW, Diepeveen D, Cullis BR (1997) Heritability of resistance to brown spot and root rot of narrow-leafed lupins caused by Pleiochaeta setoza (Kirchn.) Hughes in field experiments. Plant Breed 116:341–345Google Scholar
  68. Cowling WA, Buirchell BJ, Tapia ME (1998a) Promoting the conservation and use of underutilized and neglected crops, Lupins – Lupinus spp. IPK/IPGRI, Gatersleben, Germany/Rome, ItalyGoogle Scholar
  69. Cowling WA, Huyghe C, Święcicki W (1998b) Lupin breeding. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants. Biology, production and utilization. CABI, Oxon, pp 93–120Google Scholar
  70. Cowling WA, Buirchel BJ, Sweetingham MW, Yang H, Thomas G, Luckett DJ, Brown AGP, Hamblin J (2000) Anthracnose resistance in lupins: an innovative Australian research effort 1996–1998. In: van Santen E, Wink M, Weissmann S, Romer P (eds) Lupin, an ancient crop for the new millennium. Proceedings of the 9th international lupin conference, 20–24 June 1999, Klink/Muritz, Germany, Canterbury, New Zealand, pp 60–62Google Scholar
  71. Cristofolini G (1989) A serological contribution to the systematics of the genus Lupinus (Fabaceae). Plant Syst Evol 166:265–278Google Scholar
  72. Cronk Q, Ojeda I, Pennington RT (2006) Legume comparative genomics: progress in phylogenetics and phylogenomics. Curr Opin Plant Biol 9:99–103PubMedGoogle Scholar
  73. Croxford AE, Rogers T, Caligari PDS, Wilkinson MJ (2008) High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar. New Phytol 180:594–607PubMedGoogle Scholar
  74. Cubero JI, López-Bellido L (1986) The potential of lupins in agriculture of the Mediterranean basin. In: Department of Agriculture Western Australia, South Perth, Proceedings of the 4th international lupin conference, 15–22 Aug 1986, Geraldton, Australia, pp 129–137Google Scholar
  75. Culvenor CCJ, Petterson DS (1986) Lupin toxins – alkaloids and phomopsins. In: Department of Agriculture Western Australia, South Perth. Proceedings of the 4th international lupin conference, 15–22 Aug 1986, Geraldton, Australia, pp 188–198Google Scholar
  76. Davies CL, Turner DW, Dracup M (2000) Yellow lupin (Lupinus luteus) tolerates waterlogging better than narrow-leafed lupin (L. angustifolius). I. Shoot and root growth in a controlled environment. Aust J Agric Res 51:701–709Google Scholar
  77. Daza A, Chamber MA (1993) Plant regeneration from hypocotyl segments of Lupinus luteus L. cv. Aurea. Plant Cell Tissue Organ Cult 34:303–305Google Scholar
  78. De Haro A, Martin LM, Cubero JI (1982) Variations existing in indigenous populations of Lupinus of agricultural interest. In: López-Bellido L (ed) Proceedings of the 2nd international lupin conference, 3–6 May 1982, Torremolinos, Spain, pp 25–28Google Scholar
  79. Deckert J, Jeleńska J, Zaborowska Z, Legocki AB (1997) Isolation and classification of a family of cyclin gene homologues in Lupinus luteus. Acta Biochim Pol 44(1):37–42PubMedGoogle Scholar
  80. Doyle JJ, Doyle JL, Ballenger JA, Dickson EE, Kajita T, Ohashi H (1997) A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Am J Bot 84:541–554Google Scholar
  81. Dracup M, Thomson R (2000) Restricted branching narrow-leafed lupin 2. Cross-pollination. Aust J Agric Res 51: 1011–1015Google Scholar
  82. Drossos E, Symeonidis L, Karataglis S (1996) A contribution to the study of three taxa of the genus Lupinus from North Greece. Feddes Repert 107:219–223Google Scholar
  83. Dunn DB (1984) Cytotaxonomy and distribution of new world lupin species. In: Proceedings of the 3rd international lupin conference, 4–8 June 1984, La Rochelle, France, pp 67–85Google Scholar
  84. Dwivedi SL, Upadhyaya HD, Jayashree B, Buhariwalla HK, Blair MW, Ortiz R, Crouch JH, Serraj R (2006) Using genomics to exploit grain legume biodiversity in crop improvement. Plant Breed Rev 26:171–357Google Scholar
  85. Eastwood RJ, Hughes CE (2008) Origins of domestication of lupinus mutabilis in the Andes. In: Palta JA, Berger JB (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 373–379Google Scholar
  86. Eastwood RJ, Drummond CS, Schifino-Wittmann MT, Hughes CE (2008) Diversity and evolutionary history of lupins – insights from new phylogenies. In: Palta JA, Berger JB (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 346–354Google Scholar
  87. Edwards AC, Barneveld RJ (1998) Lupins for livestock and fish. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants. Biology: production and utilization. CABI, Oxon, pp 385–410Google Scholar
  88. Edwards OR, Ridsdill-Smith TJ, Berlandier FA (2003) Aphids do not avoid resistance in Australian lupin (Lupinus angustifolius, L. luteus) varieties. Bull Entomol Res 93:403–411PubMedGoogle Scholar
  89. El-Mayas H (1999) Selection of an effective strain of Rhizobium lupini on Lupinus nootkatensis Donn., used in reclamation of low temperature areas in Iceland. In: Hill GD (ed) Towards the 21st century. Proceedings of the 8th international lupin conference, 11–16 May 1996, Asilomar, CA, USA, pp 16–19Google Scholar
  90. Emerson RA, Beadle GW, Fraser AC (1935) A summary of linkage studies in maize. Cornell Univ Agric Exp Stn Memoir 180:1–83Google Scholar
  91. Evans AJ (1994) The carbohydrates of lupins, compositions and uses. In: Dracup M, Palta J, (eds) Proceedings of the 1st Australian lupin technical symposium, Department of Agriculture, 17–21 Oct 1994, Perth, Australia, pp 110–114Google Scholar
  92. Evans J (2005) An evaluation of potential Rhizobium inoculant strains used for pulse production in acidic soils of south-east Australia. Aust J Exp Agric 45:257–268Google Scholar
  93. Evans J, O’Connor GE, Turner GL, Bergersen FJ (1987) Influence of mineral nitrogen on nitrogen fixation by lupin (Lupinus angustifolius) as assessed by 15N isotope dilution methods. Field Crops Res 17:109–120Google Scholar
  94. Evans J, McNeill AM, Unkovich MJ, Fettell NA, Heenan DP (2001) Net nitrogen balances for cool-season grain legume crops and contributions to wheat nitrogen uptake: a review. Aust J Exp Agric 41:347–359Google Scholar
  95. FAOSTAT. 2009. FAO Statistics Division. ProdSTAT Crops. http://faostat.fao.org/Google Scholar
  96. Foley R, Gao L, Lichtenzveig J, Smith E, Shi B, Atkins C, Rosen B, Carrasquilla-Garcia N, Farmer A, Penmetsa V, Cook D, Singh K (2008) How can the genomic revolution help improve lupins. In: Palta JA, Berger JD (eds) Proceedings of the 12th international lupin conference, 14–18 Sept, Fremantle, Western Australia, pp 231–235Google Scholar
  97. Forbes I, Leuck DB, Edwardson JR, Burns RE (1971) Natural cross-pollination in blue lupin (Lupinus angustifolius L.) in Georgia and Florida. Crop Sci 11:851–854Google Scholar
  98. Francis CM, Robertson LD, Demissie A (1997) Collection of plant genetic resources in Ethiopia, January 1997. ACIAR Project Report, AustraliaGoogle Scholar
  99. French RJ, Sweetingham MW, Shea GG (2001) A comparison of the adaptation of yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) to acid sandplain soils in low rainfall agricultural areas of Western Australia. Aust J Agric Res 52:945–954Google Scholar
  100. Fudiyansyah N, Petterson DS, Bell RR, Fairbrother AH (1995) A nutritional, chemical and sensory evaluation of lupin (L. angustifolius) tempe. Int J Food Sci Technol 30:291–305Google Scholar
  101. Gammar ZG, Puech S, Zouaghi M (1999) Flow cytometry DNA assay of Mediterranean lupins. Candollea 54:45–56Google Scholar
  102. Garcia-Lopez PM, Kachlicki P, Zamora-Natera F, Ruiz-Moreno J, Stobiecki M (2006) Profiling isoflavone conjugates in different organs of Lupinus exaltatus Zucc. Food Sci Biotechnol 15:24–27Google Scholar
  103. Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT, Weeden NF, Young ND (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137:1228–1235PubMedGoogle Scholar
  104. Ghrabi GZ, Puech S, Zouaghi M (1999) Flow cytometry DNA assay of Mediterranean lupins. Candollea 54:45–56Google Scholar
  105. Gladstones JS (1967) Selection for economic characters in Lupinus angustifolius and Lupinus digitatus. 1. Non-shattering pods. Aust J Exp Agric Anim Husb 7:360–366Google Scholar
  106. Gladstones JS (1970) Lupins as crop plants. Field Crops Abstr 23:123–148Google Scholar
  107. Gladstones JS (1974) Lupins of the Mediterranean region and Africa. Tech Bull No 26. Department of Agriculture of Western Australia, South Perth, AustraliaGoogle Scholar
  108. Gladstones JS (1984) Present situation and potential of Mediterranean/African lupins for crop rotation. In: Proceedings of the 3rd international lupin conference, 4–8 June 1984, La Rochelle, France, pp 18–37Google Scholar
  109. Gladstones, JS (1994) An historical review of lupins in Australia. In: Dracup M, Palta J (eds) Proceedings of the 1st Australian lupin technical symposium, Department of Agriculture, Western Australia, 17–21 Oct 1994, South Perth, Australia, pp 1–38Google Scholar
  110. Gladstones JS (1998) Distribution, origin, taxonomy, history and importance. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants. Biology: production and utilization. CABI, Oxon, pp 1–39Google Scholar
  111. Gladstones JS, Crosbie GB (1979) Wild types introduced into Western Australia to 1973: collection site data, preliminary ratings of field characteristics and disease reactions, and measurements of seed protein and oil contents. Tech Bull 43. Department of Agriculture, Western Australia, Perth, AustraliaGoogle Scholar
  112. Goggin DE, Mir G, Smith WB, Stuckey M, Smith PMC (2008) Proteomic analysis of lupin seed proteins to identify conglutin beta as an allergen. J Agric Food Chem 56:6370–6377PubMedGoogle Scholar
  113. Gonzalez-Sama A, Lucas MM, de Felipe MR, Pueyo JJ (2004) An unusual infection mechanism and nodule morphogenesis in white lupin (Lupinus albus). New Phytol 163:371–380Google Scholar
  114. Green AG, Brown A, Oram R (1980) Determination of outcrossing rate in a breeding population of Lupinus albus L. (White Lupin). Z Pflanzenzücht 84:181–191Google Scholar
  115. Gremigni P, Wong MTF, Edwards NK, Harris D, Hamblin J (2001) Potassium nutrition effects on seed alkaloid concentrations, yield and mineral content of lupins (Lupinus angustifolius). Plant Soil 234:131–142Google Scholar
  116. Gross R (1986) First Reinhold von Sengbusch memorial lecture: Lupins in the old and new world – a biological-cultural coevolution. In: Department of Agriculture, Western Australia, South Perth. Proceedings of the 4th international lupin conference, 15–22 Aug 1986, Geraldton, Australia, pp 244–277Google Scholar
  117. Guines F, Herzic N, Huyghe C (2000) Particle mediated gene transfer to white lupin apical meristem Proceedings of the 9th international lupin conference, 20–24 June 1999. Klink/Muritz, Germany, p 119Google Scholar
  118. Gupta S, Buirchell BJ, Cowling WA (1996) Interspecific reproductive barriers and genomic similarity among the rough-seeded Lupinus species. Plant Breed 115:123–127Google Scholar
  119. Gurfinkel DM, Rao AV (2002) Determination of saponins in legumes by direct densitometry. J Agric Food Chem 50:426–430PubMedGoogle Scholar
  120. Hackbarth J, Troll HJ (1956) Lupinen als Körnerleguminosen und Futterpflanzen. In: Kapert H, Rudolf W (eds) Handbuch der Pflanzenzüchtung. Part IV. Paul Parey, Berlin, pp 1–51Google Scholar
  121. Hajdera I, Siwinska D, Hasterok R, Maluszynska J (2003) Molecular cytogenetic analysis of genome structure in Lupinus angustifolius and Lupinus cosentinii. Theor Appl Genet 107(6):988–996PubMedGoogle Scholar
  122. Hall RS, Johnson SK, Baxter AL, Ball MJ (2005a) Lupin kernel fibre-enriched foods beneficially modify serum lipids in men. Eur J Clin Nutr 59:325–333PubMedGoogle Scholar
  123. Hall RS, Thomas SJ, Johnson SK (2005b) Australian sweet lupin flour addition reduced the glycaemic index of a white bread breakfast without affecting palatability in healthy human volunteers. Asia Pac J Clin Nutr 14:91–97PubMedGoogle Scholar
  124. Hartung W, Turner NC (1997) Abscisic acid relations in stressed roots. In: Altman A, Waisel Y (eds) The biology of root formation and development. Plenum, New York, pp 125–132Google Scholar
  125. Hartwig EE (1996) Registration of soybean germplasm line D90-7256 having high seed protein and low oligosaccharides. Crop Sci 36:212Google Scholar
  126. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72:761–769Google Scholar
  127. Herridge DF, Brockwell J (1988) Contributions of fixed nitrogen and soil nitrate to the nitrogen economy of irrigated soybean. Soil Biol Biochem 20:711–717Google Scholar
  128. Herridge DF, Rose I (2000) Breeding for enhanced nitrogen fixation in crop legumes. Field Crops Res 65:229–248Google Scholar
  129. Hocking PJ, Jeffery S (2004) Cluster-root production and organic anion exudation in a group of old-world lupins and a new-world lupin. Plant Soil 258:135–150Google Scholar
  130. Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs – challenges and opportunities. Proceedings of the 4th international crop science congress, Brisbane, Australia. http//:www.cropscience.org.au
  131. Hollung K, Øverland M, Hrusticä M, Sekulicä P, Miladinovicä J, Martens H, Narum B, Sahlstrøm S, Sørensen M, Storebakken T, Skrede A (2005) Evaluation of nonstarch polysaccharides and oligosaccharide content of different soybean varieties (Glycine max) by near-infrared spectroscopy and proteomics. J Agric Food Chem 53:9112–9121PubMedGoogle Scholar
  132. Hondelmann W (1984) The lupin – ancient and modern crop plant. Theor Appl Genet 68:1–9Google Scholar
  133. Hondelmann W (2000) The history of lupin in Germany from the 18th to the mid-20th century. In: van Santen E, Wink M, Weissmann S, Romer P (eds) Lupin, an ancient crop for the new millennium. Proceedings of the 9th international lupin conference, 20–24 June 1999. Klink/Muritz, Germany, pp 2–5Google Scholar
  134. Hove EL, King S, Hill GD (1978) Composition, protein quality, and toxins of the grain legumes Glycine max, Lupinus spp., Phaseolus spp., Pisum sativum, and Vicia faba. N.Z. J Agri Res 21:457–462Google Scholar
  135. Howieson J, O’Hara GW (2008) Nitrogen fixation by lupins in Western Australia: which microbes are responsible, from where did they originate, and can we intercede? In: Palta JA, Berger JB (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Australia, pp 47–50Google Scholar
  136. Howieson JG, Fillery IRP, Legocki AB, Sikorski MM, Stepkowski T, Minchin FR, Dilworth MJ (1998) Nodulation, nitrogen fixation and nitrogen balance. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CABI, Oxon, pp 149–180Google Scholar
  137. Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 103:10334–10339Google Scholar
  138. Huyghe C (1997) White lupin (Lupinus albus L.). Field Crops Res 53:147–160Google Scholar
  139. Huyghe C (1998) Genetics and genetic modifications of plant architecture in grain legumes: a review. Agronomie 18:383–411Google Scholar
  140. IBPGR (1981) Lupin descriptors. IBPGR Secretariat, Rome, ItalyGoogle Scholar
  141. Jackson FLC (1991) Secondary compounds in plants (allelochemicals) as promoters of human biological variability. Annu Rev Anthropol 20:505–546Google Scholar
  142. Jiménez-Martínez C, Hernández-Sánchez H, Dávila-Ortiz G (2007) Diminution of quinolizidine alkaloids, oligosaccharides and phenolic compounds from two species of Lupinus and soybean seeds by the effect of Rhizopus oligosporus. J Sci Food Agric 87:1315–1322Google Scholar
  143. Johnson ND, Liu B, Bentley BL (1987) The effects of nitrogen fixation, soil nitrate, and defoliation on the growth, alkaloids, and nitrogen levels of Lupinus succulentus (Fabaceae). Oecologia 74:425–431Google Scholar
  144. Johnson SK, Chua V, Hall RS, Baxter AL (2006) Lupin kernel fibre foods improve bowel function and beneficially modify some putative faecal risk factors for colon cancer in men. Br J Nutr 95:372PubMedGoogle Scholar
  145. Jones MGK (1996) Progress towards engineered resistance to viral diseases in lupins. In: Proceedings of the 4th Western Australia lupin update meeting for advisers and consultants, 20 Feb 1996, University of Western Australia, Perth, Australia, pp 9–10Google Scholar
  146. Jones RAC (2001) Developing integrated disease management strategies against non-persistently aphid-borne viruses: a model program. Integr Pest Manag Rev 6:1–46Google Scholar
  147. Jones RAC, Coutts BA, Cheng Y (2003) Yield limiting potential of necrotic and non-necrotic strains of Bean yellow mosaic virus in narrow-leafed lupin (Lupinus angustifolius). Austr J Agri Res 54:849–859Google Scholar
  148. Jones RAC, McLean GD (1989) Virus diseases of lupins. Ann Appl Biol 114:609–637Google Scholar
  149. Jones RAC, Cowling WA (1995) Resistance to seed transmission of cucumber mosaic virus in narrow-leafed lupins (Lupinus angustifolius). Aust J Agric Res 46:1339–1352Google Scholar
  150. Jones RAC, Latham LJ (1996) Natural resistance to cucumber mosaic virus in lupin species. Ann Appl Biol 129(523):542Google Scholar
  151. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139Google Scholar
  152. Julier B, Huyghe C (1993) Description and model of the architecture of four genotypes of determinate autumn-sown white lupin (Lupinus albus L.) as influenced by location, sowing data and density. Ann Bot 72:493–501Google Scholar
  153. Kaczmarek A, Naganowska B, Wolko B (2007) PRINS and C-PRINS: promising tools for physical mapping of the lupin genome. Cell Mol Biol Lett 12(1):16–24PubMedGoogle Scholar
  154. Kaczmarek A, Naganowska B, Wolko B (2009) Karyotyping of the narrow-leafed lupin (Lupinus angustifolius) by using FISH, PRINS and computer measurements of chromosomes. J Appl Genet 50(2):77–82PubMedGoogle Scholar
  155. Karłowski WM, Stróżycki PM, Legocki AB (2000) Characterization and expression analysis of the yellow lupin (Lupinus luteus L.) gene coding for nodule specific proline-rich protein. Acta Biochim Pol 47:371–383PubMedGoogle Scholar
  156. Kasprzak A, Šafář J, Janda J, Doležel J, Wolko B, Naganowska B (2006) The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 11:396–407PubMedGoogle Scholar
  157. Käss E, Wink M (1994) Molecular phylogeny of lupins. In: Neves-Martins JM, Beirao da Costa ML (eds) Advances in lupin research. Proceedings of the 7th international lupin conference, 18–23 April 1994. Technical University of Lisbon, Evora, Portugal, pp 267–270Google Scholar
  158. Käss E, Wink M (1995) Molecular phylogeny of the Papilionoideae (Family Leguminosae): rbcL gene sequences versus chemical taxonomy. Bot Acta 108:149–162Google Scholar
  159. Käss E, Wink M (1997) Molecular phylogeny and phylogeography of Lupinus (Leguminosae) inferred from nucleotide sequences of the rbcL gene and ITS 1 + 2 regions of rDNA. Plant Syst Evol 208:139–167Google Scholar
  160. Kasten W, Kunert R (1991) A culture method for isolated embryos of different Lupinus species. Biol Zent Bl 110:290–300Google Scholar
  161. Kasten W, Paradies T, Kunert R, Straka P (1991) Progress in realization of interspecific hybrids in the genus Lupinus by means of an embryo rescue technique. Biol Zent Bl 110:290–300Google Scholar
  162. Kerley SJ, Norgaard C, Leach JE, Christiansen JL, Huyghe C, Römer P (2002) The development of potential screens based on shoot calcium and iron concentrations for the evaluation of tolerance in Egyptian genotypes of white lupin (Lupinus albus L.) to limed soils. Ann Bot 89:341–349PubMedGoogle Scholar
  163. King CA, Purcell LC (2005) Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. Plant Physiol 137:1389–1396PubMedGoogle Scholar
  164. Konieczny A, Jensen EØ, Marcker A, Legocki AB (1987) Molecular cloning of lupin leghemoglobin cDNA. Mol Biol Rep 12:61–66PubMedGoogle Scholar
  165. Książkiewicz M, Karłowski W, Yang H, Wolko B (2008) Physical and genetic analysis of genome region conferring the resistance to fungal pathogens in narrow-leafed lupin. In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Australia, pp 263–266Google Scholar
  166. Kurlovich BS (2002a) The history of lupin domestication. In: Kurlovich BS (ed) Lupins: geography, classification, genetic resources and breeding. OY International North Express, St Petersburg, Russia, pp 147–164Google Scholar
  167. Kurlovich BS (2002b) Eco-geographic classification of lupins (L. albus L., L. angustifolius L. and L. Luteus L.). In: Kurlovich BS (ed) Lupins: geography, classification, genetic resources and breeding. OY International North Express, St Petersburg, Russia, pp 89–145Google Scholar
  168. Kurlovich BS, Stankevich AK (2002) Classification of lupins. In: Kurlovich BS (ed) Lupins: geography, classification, genetic resources and breeding. OY International North Express, St Petersburg, Russia, pp 39–87Google Scholar
  169. Kurlovich BS, Stoddard FL, Earnshaw P (2008) Potential and problems of Lupinus polyphyllus Lindl domestication. In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 304–307Google Scholar
  170. Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910PubMedGoogle Scholar
  171. Lagunes-Espinoza LC, Huyghe C, Papineau J, Pacault D (1999) Effect of genotype and environment on pod wall proportion in white lupin: consequences to seed yield. Aust J Agric Res 50:575–582Google Scholar
  172. Lamberts H (1955) Broadening the bases for breeding of yellow sweet lupin. Euphytica 4:97–106Google Scholar
  173. Landers KE (1995) Vernalization response in narrow-leafed lupin (Lupinus angustifolius) genotypes. Aust J Agric Res 46:1011–1025Google Scholar
  174. Lavin M, Herendeen P, Wojciechowski M (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:575–594PubMedGoogle Scholar
  175. Le Gal MF, Lecocoq FM, Hallett JN (1986) The reserve proteins of mature cotyledons of Lupinus albus var. Lucky. II. Relationship with the nuclear DNA content. Protoplasma 130:128–137Google Scholar
  176. Lee YP, Mori TA, Barden A, Puddey IB, Sipsas S, Bourke V, Hall RS, Hodgson JM (2006) Lupin-enriched bread increases satiety and reduces energy intake acutely. Am J Clin Nutr 84:975–980PubMedGoogle Scholar
  177. Lee MJ, Pate JS, Harris DJ, Atkins CA (2007) Synthesis, transport and accumulation of quinolizidine alkaloids in Lupinus albus L. and L. angustifolius L. J Exp Bot 58:935–946PubMedGoogle Scholar
  178. Lee YP, Mori TA, Puddey IB, Sipsas S, Ackland TR, Beilin LJ, Hodgson JM (2009) Effects of lupin kernel flour-enriched bread on blood pressure: a controlled intervention study. Am J Clin Nutr 89:766–772PubMedGoogle Scholar
  179. Leśniewska K, Naganowska B (2009) Assigning linkage groups to Lupinus angustifolius chromosomes. In: Kononowicz AK, Mikołajczyk E, Maszewski J (eds) The challenges of contemporary cell biology (molecular genetics, system biology, bioinformatics). Proceedings conference, 20–21 April 2009, Łódź, Poland, pp 34–35Google Scholar
  180. Leśniewska K, Chudy M, Święcicki WK, Naganowska B, Wolko B (2009) BAC-FISH and genetic mapping in Lupinus angustifolius genome. In: Plant and animal genome XVII conference, 10–14 Jan 2009, San Diego, CA, USA. http://www.intl-pag.org/17/abstracts/P05f_PAGXVII_382.html
  181. Li H, Wylie SJ, Jones MGK (2000) Transgenic yellow lupin (Lupinus luteus). Plant Cell Rep 19:634–637Google Scholar
  182. Lin R, Renshaw D, Luckett D, Clements J, Yan G, Adhikari K, Buirchell B, Sweetingham M, Yang H (2009) Development of a sequence-specific PCR marker linked to the gene “pauper” conferring low-alkaloids in white lupin (Lupinus albus L.) for marker assisted selection. Mol Breed 23:153–161Google Scholar
  183. Liu JQ, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005) Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268PubMedGoogle Scholar
  184. López Bellido L (1991) Ten years of ILA. In: von Bayer D (ed) Proceedings of the 6th international lupin conference, 25–30 Nov 1990, Temuco-Pucon, Chile, pp 1–6Google Scholar
  185. Luckett DJ, Cowley RB, Richards MF, Roberts DM (2008) Improved methodology for screening for resistance to Pleiochaeta setosa root rot in Lupinus albus. In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 447–450Google Scholar
  186. Lush WM, Evans LT (1980) The seed coats of cowpeas and other grain legumes: structure in relation to function. Field Crops Res 3:267–286Google Scholar
  187. Ma Q, Longnecker N, Emery N, Atkins CA (1998) Growth and yield in Lupinus angustifolius are depressed by early transient nitrogen deficiency. Aust J Agric Res 49:811–819Google Scholar
  188. MacArthur JW (1934) Linkage groups in tomato. J Genet 29:123–133Google Scholar
  189. Macbride JF (1943) Flora of Peru. Fieldiana, Botany 13:74–83Google Scholar
  190. Maciel HS, Schifino-Wittmann MT (2002) First chromosome number determination in southeastern South American species of Lupinus L. (Leguminosae). Bot J Linn Soc 139:395–400Google Scholar
  191. Macknight RC, Reynolds PHS, Farnden KJF (1995) Analysis of the lupin Nodulin-45 promoter: conserved regulatory sequences are important for promoter activity. Plant Mol Biol 27:457–466PubMedGoogle Scholar
  192. Maissurjan NA, Atabiekova AI (1974) Lupin. Kolos, Moscow, pp. 463Google Scholar
  193. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402PubMedGoogle Scholar
  194. Matiru VN, Dakora ED (2005) Xylem transport and shoot accumulation of lumichrome, a newly recognized rhizobial signal, alters root respiration, stomatal conductance, leaf transpiration and photosynthetic rates in legumes and cereals. New Phytol 165:847–855PubMedGoogle Scholar
  195. Maughan P, Yourstone S, Jellen E, Udall J (2009) SNP discovery via genomic reduction, barcoding, and 454-pyrosequencing in Amaranth. Plant Genome 2:260Google Scholar
  196. Mera M, Harcha C, Miranda H, Rouanet JL (2004) Genotypic and environmental effects on pod wall proportion and pod wall specific weight in Lupinus angustifolius. Aust J Agric Res 55:397–406Google Scholar
  197. Merino EF, Planchuelo AM, Wink M (2000) Phylogenetic analysis of Lupinus. In: van Santen E, Wink M, Weissmann S, Roemer P (eds) Lupin, an ancient crop for the new millenium. Proceedings of the 9th international lupin conference, 20–24 June 1999. Klink/Müritz, Germany, pp 287–290Google Scholar
  198. Milford GFJ, Day JM, Leach JE, Stevenson HJ, Huyghe C, Papineau J (1993) The effect of modifying plant structure on yield and maturity of the white lupin Lupinus albus. Ann Appl Biol 122:113–122Google Scholar
  199. Miller MS, Pepper IL (1988) Physiological and biochemical characteristics of a fast-growing strain of lupin rhizobia isolated from the Sonoran Desert. Soil Biol Biochem 20:319–322Google Scholar
  200. Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci USA 94:8393–8398PubMedGoogle Scholar
  201. Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution – grasses, line up and form a circle. Curr Biol 5:737–739PubMedGoogle Scholar
  202. Mugnier J (1988) Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7:9–12Google Scholar
  203. Mujica A (1994) Andean grains and legumes. In: Hernándo Bermejo JE, León J (eds) Neglected crops: 1492 from a different perspective. Plant production and protection series No 26. FAO, Rome, Italy, pp 131–148Google Scholar
  204. Nadolska-Orczyk A (1992) Somatic embryogenesis of agriculturally important lupin species (Lupinus angustifolius, L. albus, L. mutabilis). Plant Cell Tissue Organ Cult 28:19–25Google Scholar
  205. Naganowska B, Kaczmarek A (2005) Repetitive DNA sequences in cytogenetic studies of the Lupinus genome. In: van Santen E, Hill GD (eds) Mexico, where old and new world lupins meet. Proceedings of the 11th international lupin conference, 4–9 May 2005, Guadalajara, Jalisco, Mexico, Canterbury, New Zealand, pp 27–29Google Scholar
  206. Naganowska B, Ładoń D (2000) Chromosomes of Lupinus hispanicus subsp. hispanicus Boiss. et Reut., L. luteus L. and their hybrids. J Appl Genet 41(3):167–170Google Scholar
  207. Naganowska B, Leśniewska K (2008) Cytogenetic mapping of the Lupinus angustifolius genome. In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 291–293Google Scholar
  208. Naganowska B, Zielińska A (2002) Physical mapping of 18S-25S rDNA and 5S rDNA in Lupinus by fluorescent in situ hybridization. Cell Mol Biol Lett 7(2B):665–670PubMedGoogle Scholar
  209. Naganowska B, Doležel J, Święcicki WK (2003a) Development of molecular cytogenetics and physical mapping of ribosomal RNA genes in Lupinus. Biol Plant 46(2):211–215Google Scholar
  210. Naganowska B, Wolko B, Śliwińska E, Kaczmarek Z (2003b) Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae). Ann Bot 92:349–355PubMedGoogle Scholar
  211. Naganowska B, Wolko B, Śliwińska E, Kaczmarek Z, Schifino-Wittmann MT (2006) 2C DNA variation and relationships among new world species of the genus Lupinus (Fabaceae). Plant Syst Evol 256:147–157Google Scholar
  212. Narożna D, Paś J, Schneider J, Mądrzak CJ (2004) Two sequences encoding chalcone synthase in yellow lupin (Lupinus luteus L.) nay have evolved by gene duplication. Cell Mol Biol Lett 9:95–105PubMedGoogle Scholar
  213. Nelson MN, Phan HTT, Ellwood SR, Moolhuijzen PM, Hane J, Williams A, O’Lone CE, Fosu-Nyarko J, Scobie M, Cakir M, Jones MGK, Bellgard M, Książkiewicz M, Wolko B, Barker SJ, Oliver RP, Cowling WA (2006) The first gene-based map of Lupinus angustifolius L. – location of domestication genes and conserved synteny with Medicago truncatula. Theor Appl Genet 113(2):225–238PubMedGoogle Scholar
  214. Nelson MN, Moolhuijzen PM, Boersma JG, Chudy M, Lesniewska K, Bellgard M, Oliver RP, Święcicki W, Wolko B, Cowling WA, Ellwood SR (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Res 17(2):73–83. doi: 10.1093/dnares/dsq001 PubMedGoogle Scholar
  215. Neves-Martins JM (1986) Pattern types of L. albus populations from Portugal after multivariate analysis. In: Department of Agriculture Western Australia, South Perth. Proceedings of the 4th international lupin conference, 15–22 Aug 1986, Geraldton, Australia, p 282Google Scholar
  216. Neves-Martins JM (1994) Characterization in Lupinus albus and Lupinus mutabilis populations types. In: Neves-Martins JM, Beirao da Costa ML (eds) Advances in lupin research. Proceedings of the 7th international lupin conference, 18–23 April 1994. Technical University of Lisbon, Evora, Portugal, pp 65–69Google Scholar
  217. Nowacki E, Prus-Glowacki W (1971) Differentiation of protein fractions in species and varieties of the genus Lupinus with the use of serological methods. Genet Pol 12:245–260Google Scholar
  218. Nowacki E, Oledzka T, Batco A (1988) Taximetrics of Lupinus albus L. sensu lato. In: Twardowski T (ed) Proceedings of the 5th international lupin conference, 5–8 July 1988, Poznań, Poland, pp 434–438Google Scholar
  219. Nuc P, Nuc K, Szweykowska-Kulińska Z, Pawełkiewicz J (1997) Nucleotide sequence of nuclear tRNAGly genes and tRNAGly pseudogenes from yellow lupine (Lupinus luteus): expression of the tRNAGly genes in vitro and in vivo. Acta Biochim Pol 44:259–274PubMedGoogle Scholar
  220. Nuc K, Nuc P, Słomski R (2001) Yellow lupin cyclophilin transcripts are highly accumulated in the nodule meristem zone. Mol Plant Microbe Interact 14(12):1384–1394PubMedGoogle Scholar
  221. Obermayer R, Święcicki WK, Greilhuber J (1999) Flow cytometric determination of genome size in some Old World Lupinus species (Fabaceae). Plant Biol 1:403–407Google Scholar
  222. Olczak T, Rurek M, Janska H, Augustyniak H, Sawicka- Sienkiewicz EJ (2001) Screening of cytoplasmic DNA diversity between and within Lupinus mutabilis Sweet and Lupinus albus sensu lato by restriction fragment length polymorphism (RFLP). J Appl Genet 42:127–137PubMedGoogle Scholar
  223. Oldershaw AW (1925) Lupins and light land. Agriculture, London, UK 32:316–325Google Scholar
  224. Olszewska MJ, Legocki A (1989) Changes in DNA content during rhizobial nodule development in Lupinus luteus L. Cytophotometry and autoradiography. Biol Zentralbl 108:221–230Google Scholar
  225. Oram RN (1983) Selection for higher seed yield in the presence of the deleterious low alkaloid allele iucundis in Lupinus angustifolius L. Field Crops Res 7:169–180Google Scholar
  226. Palta JA, Turner NC, French B, Buirchell B (2003) Selection for high lupin yield under terminal drought. Crop updates 2003. Department of Agriculture, Western AustraliaGoogle Scholar
  227. Palta JA, Turner NC, French RJ (2004) The yield performance of lupin genotypes under terminal drought in a Mediterranean environment. Aust J Agric Res 55:449–459Google Scholar
  228. Papineau J, Huyghe C (1992) Collecting white lupin in the Azores. FAO/IBPGR Plant Genet Resour Newsl 88(89):77–78Google Scholar
  229. Pascual H (2004) Lupinus mariae-josephi (Fabaceae), new and surprising species discovered in Spain. An Jard Bot Madr 61:69–72Google Scholar
  230. Pascual H, Bellostas N, Guillaume L (2006) Lupinus mariae-josephi H. Pascual – a new lupin species adapted to calcareous soils. Grain Legum 46(2):8–9Google Scholar
  231. Passarge E, Horsthemke B, Farber RA (1999) Incorrect use of the term synteny. Nat Genet 23:387–387PubMedGoogle Scholar
  232. Pate JS, Williams W, Farrington P (1985) Lupin (Lupinus spp.). In: Summerfield RJ, Roberts EH (eds) Grain legume crops. Collins, London, pp 37–72Google Scholar
  233. Pate JS, Emery RJN, Atkins CA (1998) Transport physiology and partitioning. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CABI, Oxon, pp 181–226Google Scholar
  234. Pazdernik DL, Killam AS, Orf JH (1997) Analysis of amino and fatty acid composition in soybean seed, using near infrared reflectance spectroscopy. Agron J 89:679–685Google Scholar
  235. Pazy B, Heyn CC, Herrnstadt I, Plitmann U (1977) Studies in populations of the old world Lupinus species. I. Chromosomes of the East-Mediterranean lupines. Isr J Bot 26:115–127Google Scholar
  236. Peel DNY, Galwey NW (1999) Identification of stable plant architecture: the key to development of Lupinus albus as a crop for Northern Europe. In: Hill GD (ed) Towards the 21st century. Proceedings of the 8th international lupin conference, 11–16 May 1996, Asilomar, California, USA, pp 346–348Google Scholar
  237. Pepper IL (1991) Physiological adaptation of rhizobia to improve nitrogen fixation in desert environments. In: BishayA, Dregne H (eds) Desert development. Part 1: desert agriculture, ecology and biology. Proceedings of the 2nd international desert development conference, Cairo, Egypt, pp 293–304Google Scholar
  238. Pereira H, Feio R, Talhinhas P, Neves-Martins J (2000) Characterization and evaluation of Lupinus albus, L. angustifolius and L. luteus accessions of the DBEB gene bank. In: van Santen E, Wink M, Weissmann S, Romer P (eds) Lupin, an ancient crop for the new millennium. Proceedings of the 9th international lupin conference, 20–24 June 1999. Klink/Muritz, Germany, pp 138–144Google Scholar
  239. Perez-Galdona R, Donate-Correa J, Rivas R, Velazquez E, Hernandez M, Temprano F, Martinez-Molina E, Ruiz-Argueso T, Leon-Barrios M (2004) Genetic diversity of bradyrhizobial populations from diverse geographic origins that nodulate Lupinus spp. and Ornithopus spp. Syst Appl Microbiol 26:611–623Google Scholar
  240. Perrey R, Warskulat U, Wink M (1990) (1990) Molecular cloning of a cDNA for the ubiquitin gene of Lupinus polyphyllus. Nucleic Acids Res 18(21):6428PubMedGoogle Scholar
  241. Perrino P, Hammer K, Hanelt P (1984) Collection of land-races of cultivated plants in Southern Italy 1983. Kulturpflanze 32:207–216Google Scholar
  242. Perrisse P, Torres L, Planchuelo AM (2000) Chromosome studies in some members of Lupinus (Fabaceae: Lupininae) of South America. Cytologia 65:149–152Google Scholar
  243. Petterson DS (1998) Composition and food uses of lupins. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants. Biology: production and utilization. CABI, Oxon, pp 353–384Google Scholar
  244. Petterson DS, Sipsas S, Mackintosh JB (1997) The chemical composition and nutritive value of Australian grain legumes, 2nd edn. Grains Research and Development Corporation, Canberra, AustraliaGoogle Scholar
  245. Phan HTT, Ellwood SR, Adhikai K, Nelson MN, Oliver RP (2007) The first genetic and comparative map of white lupin (Lupinus albus L.): identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res 14:59–70PubMedGoogle Scholar
  246. Phoplonker MQ, Caligari PDS (1993) Cultural manipulations affecting callus formation from seedling explants of the pearl lupin (Lupinus mutabilis Sweet). Ann Appl Biol 123:419–432Google Scholar
  247. Pigeaire A, Abernethy D, Smith PM, Simpson K, Fletcher N, Lu C-Y, Atkins CA, Cornish E (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol Breed 3:341–349Google Scholar
  248. Planchuelo AM (1978) A monograph of Lupinus for Argentina. PhD Dissertation, University of Missouri, Columbia, USAGoogle Scholar
  249. Planchuelo AM (1994) Wild lupins distribution and its implication as germplasm resources. In: Neves-Martins JM, Beirao da Costa ML (eds) Advances in lupin research. Proceedings of the 7th international lupin conference, 18–23 April 1994. Technical University of Lisbon, Evora, Portugal, pp 65–69Google Scholar
  250. Planchuelo AM (1999) Biodiversity of lupins in South America. In: Hill GD (ed) Towards the 21st century. Proceedings of the 8th international lupin conference, 11–16 May 1996, Asilomar, California, USA, pp 394–400Google Scholar
  251. Planchuelo AM (2000) Endangered species of wild lupins in South America. In: van Santen E, Wink M, Weissmann S, Romer P (eds) Lupin, an ancient crop for the new millennium. Proceedings of the 9th international lupin conference, 20–24 June 1999. Klink/Muritz, Germany, pp 320–323Google Scholar
  252. Planchuelo AM, Dunn DB (1984) The simple leaves Lupinus of Argentina and their relatives. Ann Mo Bot Gard 71:92–104Google Scholar
  253. Planchuelo-Ravelo AM (1984) Taxonomic studies of Lupinus in South America. In: Proceedings of the 3rd international lupin conference, 4–8 June 1984, La Rochelle, France, pp 39–53Google Scholar
  254. Planchuelo-Ravelo AM (1991) Flower morphology of Lupinus gibertianus complex and its relation with cultivated species. In: von Baer D (ed) Proceedings of the 6th international lupin conference, 25–30 Nov 1990, Temuco-Pucon, Chile, pp 366–372Google Scholar
  255. Plitmann U, Heyn CC (1984) Old world Lupinus: taxonomy, evolutionary relationships, and links with new world species. In: Proceedings of the 3rd international lupin conference, 4–8 June 1984, La Rochelle, France, pp 56–66Google Scholar
  256. Plitmann U, Pazy B (1984) Cytogeographical distribution of the Old World Lupinus. Webbia 38:531–539Google Scholar
  257. Pniewski T, Kapusta J, Legocki AB (2002) In vitro micropropagation of four lupins species. Acta Physiol Plant 24(4):417–424Google Scholar
  258. Pniewski T, Kapusta J, Płucienniczak A (2006) Agrobacterium-mediated transformation of yellow lupin to generate callus tissue producing HBV surface antigen in a long-term culture. J Appl Genet 47(4):309–318PubMedGoogle Scholar
  259. Podyma E, Turzyński D, Rybczyński JJ (1988) An immature embryo culture, vegetative propagation and somatic cell genetic manipulation of Lupinus taxa. In: Twardowski T (ed) Proceedings of the 5th international lupin conference, 5–8 July 1988, Poznań, Poland, pp 439–443Google Scholar
  260. Przyborowski J, Packa D (1997) Embryo development after interspecific hybridisation of Lupinus albus L., L. mutabilis Sweet and L. angustifolius L. J Appl Genet 38:131–141Google Scholar
  261. Przyborowski JA, Packa D, Samborska-Ciania A (1996) Prospects fpor obtaining hybryd plants a a result of interspecific crossing between Lupinus albus L., Lupinus mutabilis Sweet and Lupinus angustifolius L. Genet Pol 37A:166–169Google Scholar
  262. Przybylska Z, Przybylska J (1997) Electrophoretic seed globulin patterns in some New World Lupinus species. Genet Resour Crop Evol 44:57–62Google Scholar
  263. Przybylska J, Zimniak-Przybylska Z (1995) Electrophoretic patterns of seed globulins in the Old World Lupinus species. Genet Resour Crop Evol 42:69–75Google Scholar
  264. Przyborowski JA, Weeden NF (2001) RAPD-based assessment of genetic similarity and distance between Lupinus species in section Albus J Appl Genet 42(4):425–433PubMedGoogle Scholar
  265. Przysiecka Ł, Naganowska B, Wolko B (2009) The chalcone isomerase genes of narrow-leafed lupin: physical and genetic mapping. Abstract 4th conference of Polish society of “Experimental Plant Biology. Why not?!”, 21–25 Sept 2009, Cracow, Poland. Acta Biol Crac 51(suppl 2): 80Google Scholar
  266. Rahman MS, Gladstones JS (1974) Effects of temperature and photoperiod on flowering and yield components of lupin genotypes in the field. Aust J Exp Agric Anim Husb 14:205–213Google Scholar
  267. Regalado AP, Pinheiro C, Vidal S, Chaves I, Ricardo CP, Rodrigues-Pousada C (2000) The Lupinus albus class-III chitinase gene, IF3, is constitively expression in vegetative organs and developing seeds. Planta 210:543–550PubMedGoogle Scholar
  268. Reynolds PHS, Smith LA, Dickson JMJJ, Jones WT, Jones SD, Rodber KA, Carne A, Liddane CP (1992) Molecular cloning of a cDNA encoding aspartate aminotransferase-P2 from lupin root nodules. Plant Mol Biol 19:465–472PubMedGoogle Scholar
  269. Römer P, Jachn-Deesbach W (1988) In: Twardowski T (ed) Development in Lupinus mutabilis breeding. Proceedings of the 5th international lupin conference. 5–8 July 1988, Poznań, Poland. pp. 40–50Google Scholar
  270. Rodrigues ML, Pacheco CMA, Chaves MM (1995) Soil-plant water relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. J Exp Bot 46:947–956Google Scholar
  271. Roy NN, Gladstones JS (1988) Further studies with interspecific hybridization among Mediterranean/African lupin species. Theor Appl Genet 75:606–609Google Scholar
  272. Rybczyński JJ, Podyma E (1993a) Micropropagation of some Lupinus species from seedling explants. Genet Pol 34(3):237–247Google Scholar
  273. Rybczyński JJ, Podyma E (1993b) Preliminary studies of plant regeneration via somatic embryogenesis induced on immature cotyledons of white lupin (Lupinus albus L.). Genet Pol 34:249–257Google Scholar
  274. Sakowicz T, Olszewska MJ (1997) DNA content, interphase AgNOR-area, number of 3HrDNA hybridization signals and the methylation level in coding rDNA sequence in different organs of Lupinus luteus L. Genetica 99:67–72Google Scholar
  275. Salmanowicz BP, Przybylska J (1994) Electrophoretic patterns of seed albumins in the Old-World Lupinus species (Fabaceae): variation in the 2S albumin class. Plant Syst Evol 192: 67–78Google Scholar
  276. Salmanowicz BP (1999) Seed globulins in the Old World Lupinus species: comparative study by HPLC. Genet Resour Crop Evol 46:409–417Google Scholar
  277. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239PubMedGoogle Scholar
  278. Sator C (1985) Studies on shoot regeneration of lupins (Lupinus spp.). Plant Cell Rep 4:126–128Google Scholar
  279. Sawicka-Sienkiewicz EJ, Brejdak E (1999) Interspecific crossability of the Andean Lupin (Lupinus mutabilis Sweet). In: Hill GD (ed) Towards the 21st century. Proceedings of the 8th international lupin conference, 11–16 May 1996, Asilomar, California, USA, pp 357–360Google Scholar
  280. Sawicka-Sienkiewicz EJ, Galek R, Clements JC, Wilson J (2008) Difficulties with interspecific hybridization in the genus Lupinus. In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 135–142Google Scholar
  281. Schäfer-Menuhr A (1990) Electrical fusion of lupin species. In: von Bayer D (ed) Proceedings of the 6th international lupin conference, Temuco-Pucon, pp 373–375Google Scholar
  282. Schäfer-Menuhr A (1991) Regeneration of shoots from protoplasts of lupins. Lupin Newsl 14:42–44Google Scholar
  283. Schäfer-Menuhr A, Busmann A, Czerwinski T (1988) Embryo rescue of interspecific hybrids. In: Twardowski T (ed) Proceedings of the 5th international lupin conference, 5–8 July 1988, Poznań, Poland, pp 424–428Google Scholar
  284. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183PubMedGoogle Scholar
  285. Shankar M, Cowling WA, Sweetingham MW, Than KA, Edgar JA, Michalewicz A (1999) Screening for resistance to Diaporthe toxica in lupins by estimation of phomopsins and glucoseamine in individual plants. Plant Pathol 48:320–324Google Scholar
  286. Shankar M, Sweetingham MW, Cowling WA (2002) Identification of alleles at two loci controlling resistance to Phomopsis stem blight in narrow-leafed lupin (Lupinus angustifolius L.). Euphytica 125:35–44Google Scholar
  287. Si P, Sweetingham MW, Buirchell BJ, Bowran DG, Piper T (2006) Genotypic variation in metribuzin tolerance in narrow-leafed lupin (Lupinus angustifolius L). Aust J Exp Agric 46:85–91Google Scholar
  288. Siddique KHM, Regan KL, Tennant D, Thomson BD (2001) Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. Eur J Agron 15:267–280Google Scholar
  289. Šimková H, Číhalíková J, Vrána J, Lysák MA, Doležel J (2003) Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol Plant 46:369–373Google Scholar
  290. Simpson MJA (1986a) Geographical variation in Lupinus albus L. I. Iberia. Plant Breed 96:232–240Google Scholar
  291. Simpson MJA (1986b) Geographical variation in Lupinus albus L. II. Northwest Spain, the Nile Valley, the Balkans and Turkey. Plant Breed 96:241–251Google Scholar
  292. Sinha A, Wetten AC, Caligari PDS (2003/2004) Optimisation of protoplast production in white lupin. Biol Plant 47(1):21–25Google Scholar
  293. Sipsas S (2004) Lupin vs Soy – no longer the poor relative. In: Crop Updates 2004, Department of Agriculture, Western AustraliaGoogle Scholar
  294. Sipsas S (2008) Lupin products – concepts and reality. In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 506–513Google Scholar
  295. Sipsas S, Snowden J, St John C (2004) Sulphur amino acid content in lupins. In: Proceedings of the 5th European conference on grain legumes, Dijon, France, p 399Google Scholar
  296. Sitren HS, Ahmed EM, George DE (1985) In vivo and in vitro assessment of antinutritional factors in peanut and soy. J Food Sci 50:419–423Google Scholar
  297. Smartt J, Hymowitz T (1985) Domestication and the evaluation of grain legumes. In: Summerfield RJ, Roberts EH (eds) Grain legume crops. Collins, London, pp 37–72Google Scholar
  298. Smith PMC, Pigeaire A, Fletcher N, Abernethy D, Walker RM, Simpson K, Lu C-Y, Cornish E, Atkins CA (1996) Routine transformation of Lupinus angustifolius via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. In: Looking towards the 21st century. Abstract book of 8th international lupin conference, 11–16 May 1996, Asilomar, California, USAGoogle Scholar
  299. Snowdon RJ, Kőhler W, Kőhler A (1997) Chromosomal localization and characterization of rDNA loci in the Brassica A and C genomes. Genome 40:582–587PubMedGoogle Scholar
  300. Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899PubMedGoogle Scholar
  301. Somsap V, Cooper JI, Li D, Jones MGK (1994) Tissue culture and transformation of lupins. In: Dracup M, Palta J (eds) Proceedings of the 1st Australian lupin technical symposium, 17–21 Oct 1994, Perth, Australia, pp 312Google Scholar
  302. Sroga GE (1987) Plant regeneration of two Lupinus spp. From callus cultures via organogenesis. Plant Sci 51:245–249Google Scholar
  303. Stępkowski T, Moulin L, Krzyżańska A, McInnes A, Law IJ, Howieson JG (2005) European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl Environ Microbiol 71: 7041–7052PubMedGoogle Scholar
  304. Stombaugh SK, Jung HG, Orf JH, Somers DA (2000) Genotypic and environmental variation in soybean seed cell wall polysaccharides. Crop Sci 40:408–412Google Scholar
  305. Sweetingham MW (2000) Anthracnose workshop report. In: van Santen E, Wink M, Weissmann S, Romer P (eds) Lupin, an ancient crop for the new millennium. Proceedings of the 9th international lupin conference, 20–24 June, 1999. Klink/Muritz, Germany, pp 63–68Google Scholar
  306. Sweetingham M, Kingwell R (2008) Lupins – reflections and future prospects. In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, Canterbury, New Zealand, pp 514–524Google Scholar
  307. Sweetingham MW, Yang H (1998) New sources of resistance to Pleiochaeta and Eradu patch disease in Lupinus spp. GRDC Final Report, Project UWA 166. CLIMA, UWA, Perth, AustraliaGoogle Scholar
  308. Sweetingham MW, Jones RAC, Brown AGP (1998) Diseases and pests. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants. Biology: production and utilization. CABI, Oxon, pp 263–289Google Scholar
  309. Sweetingham MW, Adhikari K, Clements JC, Shea G (2006a) Yellow lupin workshop report. Department of Agriculture and Food Western Australia and Centre for Legumes in Mediterranean AgricultureGoogle Scholar
  310. Sweetingham MW, Frencel I, Buirchell BJ, Barzyk P, Lewartowska E, Yang HA, Ponomaryova L, Yakasheva A, Adhikari KN, Francis CM, Thomas GJ, Andrada M da PC (2006b) Collaborative anthracnose resistance screening in Poland, Russia and Australia. In: Ruiz Moreno JJ (ed) Mexico, where old and new world lupins meet. Proceedings of the 11th international lupin conference, 4–9 May 2005, Guadalajara, Jalisco, Mexico, pp 2–5Google Scholar
  311. Święcicki W (1986a) Developments in breeding L. luteus and its relatives. In: Department of Agriculture Western Australia, South Perth, Proceedings of the 4th international lupin conference, 15–22 Aug 1986, Geraldton, Australia, pp 20–24Google Scholar
  312. Święcicki W (1986b) Developments in L. albus breeding. In: Department of Agriculture Western Australia, South Perth, Proceedings of the 4th international lupin conference, 15–22 Aug 1986, Geraldton, Australia, pp 14–19Google Scholar
  313. Święcicki W (1988) Lupin gene resources in the old world. In: Twardowski T (ed) Proceedings of the 5th international lupin conference, 5–8 July 1988, Poznań, Poland, pp 2–14Google Scholar
  314. Święcicki W, Święcicki WK (1995) Domestication and breeding improvement of narrow-leafed lupin (L. angustifolius L.). J Appl Genet 36(2):155–167Google Scholar
  315. Święcicki W, Święcicki WK (2000) Domestication and genetics of the yellow lupin (Lupinus luteus L.) and the biotechnological improvement of lupins. J Appl Genet 41:11–34Google Scholar
  316. Święcicki W, Święcicki WK, Nijaki T (1999) Lupinus x hispanicoluteus – an interspecific hybrid of old world lupins. Acta Soc Bot Pol 68:217–220Google Scholar
  317. Talhinhas P, Neves-Martins J, Oliveira H (2000) Screening Lupinus albus and L. angustifolius for anthracnose resistance. In: van Santen E, Wink M, Weissmann S, Romer P (eds) Lupin, an ancient crop for the new millennium. Proceedings of the 9th international lupin conference, 20–24 June 1999. Klink/Muritz, Germany, pp 55–56Google Scholar
  318. Talhinas P, Sreenivasprased S, Neves-Martins J, Oliveira H (2003) Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology 92:986–996Google Scholar
  319. Tapscott HL, Cowling WA, Dracup M, Speijers EJ (1994) Effect of genotype, site and plant density on yield components of a historical set of narrow-leafed lupin cultivars. In: Dracup M, Palta J (eds) Proccedings of the 1st Australian lupin technical symposium, 17–21 Oct 1994. Department of Agriculture, South Perth, Australia, p 317Google Scholar
  320. Thomas GJ, Sweetingham MW (2004) Cultivar and environment influence the development of lupin anthracnose caused by Colletotrichum lupini. Aust Plant Pathol 33:571–577Google Scholar
  321. Thomas HM, Harper JA, Meredith MR, Morgan WG, King IP (1997) Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization. Genome 40:406–410PubMedGoogle Scholar
  322. Tian L, Peel G, Lei Z, Aziz N, Dai X, He J, Watson B, Zhao P, Sumner L, Dixon R (2009) Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots. BMC Plant Biol 9:1PubMedGoogle Scholar
  323. Torres KB, Quintos NR, Necha LL, Wink M (2002) Alkaloid profile of leaves and seeds of Lupinus hintonii C. P. Smith. J Biosci 57:243–247Google Scholar
  324. Turner BL (1994) Species of Lupinus (Fabaceae) occurring in northeastern Mexico (Nuevo Leon and closely adjacent states). Phytologia 76:290–302Google Scholar
  325. Turner BL (1995) A new species of Lupinus (Fabaceae) from Oaxaca, Mexico: a shrub or tree mostly three to eight meters high. Phytologia 79:102–107Google Scholar
  326. Uhde-Stone C, Li A, Daemen M, Allan DL, Vance CP (2001) Isolation and characterization of white lupin proteoid root expressed sequence tags (ESTs) associated with plant hormones. In: Horst WWJ, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach HE, Merbach W, Olfs H-W, Römheld V, Sattelmacher B, Schmidhalter U, Schenk MK, von Wirén N (eds) Development in plant and soil sciences: plant nutrition. Food security and sustainability of agro-ecosystems through basic and applied research. Kluwer, San Diego, CA, pp 32–33Google Scholar
  327. Uhde-Stone C, Zinn KE, Ramirez-Yanez M, Li AG, Vance CP, Allan DL (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol 131:1064–1079PubMedGoogle Scholar
  328. Uhde-Stone C, Liu J, Zinn KE, Allan DL, Vance CP (2005) Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress. Plant J 44:840–853PubMedGoogle Scholar
  329. Unkovich MJ, Pate JS (2003) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Res 65:211–228Google Scholar
  330. van Santen C, Noffsinger SL, van Santen E (2006) Low-tech breeding approach to develop low-return cultivars. In: van Santen E, Hill GD (eds) Mexico, where old and new world lupins meet. Proceedings of the 11th international lupin conference, 4–9 May 2005, Guadalajara, Jalisco, Mexico, Canterbury, New Zealand, pp 80–83Google Scholar
  331. Vincze E, Reeves JM, Lamping E, Farnden KJF, Reynolds PHS (2004) Repression of the L-asparaginase gene during nodule development in Lupinus angustifolius. Plant Mol Biol 26:303–311Google Scholar
  332. von Baer D, Saelzer M, Vega P, Ibieta L, Molina E, von Baer E, Ibanez R, Hashaben U (2000) Isoflavones and anthracnose in Lupinus albus and L. angustifolius. In: van Santen E, Wink M, Weissmann S, Romer P (eds) Lupin, an ancient crop for the new millennium. Proceedings of the 9th international lupin conference, 20–24 June 1999. Klink/Muritz, Germany, pp 26–32Google Scholar
  333. Vuillaume E, Hoff T (1986) Development in vitro d’embryons immatures de Lupinus albus L. et de Lupinus mutabilis Sweet par culture de gousses, d’ovules ou d’embryons isoles. Agronomie 6:925–930Google Scholar
  334. Wallace AT, Hanson WD, Decker P (1954) Natural cross-pollination in blue and yellow lupines. Agron J 46:59–60Google Scholar
  335. Walton GH, Francis CM (1975) Genetic influences on the split seed disorder in Lupinus angustifolius L. Aust J Agric Res 26:641–646Google Scholar
  336. Wang Q, Ke L, Yang DI, Bao B, Jiang J, Ying T (2007) Change in oligosaccharides during processing of soybean sheet. Asia Pac J Clin Nutr 16:89–94PubMedGoogle Scholar
  337. Ward S (2001) A recessive Allele inhibiting saponin synthesis in two lines of bolivian quinoa (Chenopodium quinoa Willd.). J Hered 92:83–86PubMedGoogle Scholar
  338. Wasaki J, Ando M, Ozawa K, Omura M, Osaki M, Ito H, Matsui H, Tadano T (1997) Properties of secretory acid phosphatase from lupin roots under phosphorus-deficient conditions. Soil Sci Plant Nutr 43:981–986Google Scholar
  339. Watt M, Evans JR (2003) Phosphorus acquisition from soil by white lupin (Lupinus albus L.) and soybean (Glycine max L.) species with contrasting root development. Plant Soil 248:271–283Google Scholar
  340. Weeden NF, Ellis THN, Timmerman-Vaughan GM, Simon CJ, Torres AM, Wolko B (2000) How similar are the genomes of the cool season food legumes? In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Proceedings of the 3rd international food legumes research conference. Kluwer, Dordrecht, pp 397–410Google Scholar
  341. Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249PubMedGoogle Scholar
  342. Wetten A, Sinha A, Caligari PDS (1999) Electrofusion of lupin protoplasts for the production of interspecific hybrids. In: Hill GD (ed) Towards the 21st century. Proceedings of the 8th international lupin conference, 11–16 May 1996, Asilomar, California, USA, pp 270–272Google Scholar
  343. Wilcox JR, Shibles RM (2001) Interrelationships among seed quality attributes in soybean. Crop Sci 41:11–14Google Scholar
  344. Williams W (1979) Studies on the development of lupins for oil and protein. Euphytica 28:481–488Google Scholar
  345. Williams CA, Demissie A, Harborne JB (1983) Flavonoids as taxonomic markers in the Old World Lupinus species. Biochem Syst Ecol 11:221–231Google Scholar
  346. Williamson PM, Highet AS, Gams W, Sivasithamparam K, Cowling WA (1994) Diaporthe toxica sp. nov., the cause of lupinosis in sheep. Mycol Res 98:1364–1368Google Scholar
  347. Winefield CS, Reddington BD, Jones WT, Reynolds PH, Farnden KJ (1994) Cloning and characterization of a cDNA encoding aspartate aminotransferase-P1 from Lupinus angustifolius root tips. Plant Physiol 104(2):417–423PubMedGoogle Scholar
  348. Wink M (1984) Biochemistry and chemical ecology of lupin alkaloids. In: Proceedings of the 3rd international lupin conference, 4–8 June 1984, La Rochelle, France, pp 326–343Google Scholar
  349. Wink M (1991) Plant breeding: low or high alkaloid content? In: von Bayer D (ed) Proceedings of the 6th international lupin conference, 25–30 Nov 1990, Temuco-Pucon, Chile, pp 326–334Google Scholar
  350. Wink M (1993) Quinolizidine alkaloids. In: Waterman P (ed) Methods in plant biochemistry, vol 8. Academic, London, pp 197–239Google Scholar
  351. Wink M (1994) Biological activities and potential application of lupin alkaloids. In: Neves-Martins JM, Costa ML (eds) Advances in lupin research. Proceedings of the 7th international lupin conference, 18–23 April 1993. Technical University of Lisbon, Evora, Portugal, pp 161–178Google Scholar
  352. Wink M (2006) Heath promoting activities of non-nutritional factors in lupins. In: van Santen E, Hill GD (eds) Mexico, where old and new world lupins meet. Proceedings of the international lupin conference, 4–9 May 2005, Guadalajara, Jalisco, Mexico, Canterbury, New Zealand, pp 308–319Google Scholar
  353. Wink M, Mohamed GIA (2003) Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbc L gene. Biochem Syst Ecol 31:897–917Google Scholar
  354. Wink M, Meibner C, Witte L (1995) Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 38:139–153Google Scholar
  355. Withers NJ, Forde BJ (1979) Translocation of 14C in Lupinus albus. NZ J Agric Res 22:261–269Google Scholar
  356. Wolko B, Weeden NF (1990a) Isozyme number as an indicator of phylogeny in Lupinus. Genet Pol 31:179–187Google Scholar
  357. Wolko B, Weeden NF (1990b) Relationships among lupin species as reflected by isozyme phenotype. Genet Pol 31:189–197Google Scholar
  358. Wolko B, Kasprzak A, Doležel J (2008) Screening a narrow-leafed lupin BAC library to search for clones containing nodulation and disease resistance genes In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 50–51Google Scholar
  359. Yamka RM, Hetzler BM, Harmon DL (2005) Evaluation of low-oligosaccharide, low-phytate whole soybeans and soybean meal in canine foods. J Anim Sci 83:393–399PubMedGoogle Scholar
  360. Yang H, Sweetingham MW, Cowling WA, Smith PMC (2001) DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and isolation of sequence- specific PCR markers in lupin (Lupinus angustifolius L.). Mol Breed 7:203–209Google Scholar
  361. Yang H, Shankar M, Buirchell BJ, Sweetingham MW, Caminero C, Smith PMC (2002) Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 105:265–270PubMedGoogle Scholar
  362. Yang H, Boersma JG, You M, Buirchell BJ, Sweetingham MW (2004) Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 14:145–151Google Scholar
  363. Yang H, Renshaw D, Thomas G, Buirchell B, Sweetingham M (2008) A strategy to develop molecular markers applicable to a wide range of crosses for marker assisted selection in plant breeding: a case study on anthracnose disease resistance in lupin (Lupinus angustifolius L.). Mol Breed 21:473–483Google Scholar
  364. Yang H, Lin R, Renshaw D, Li C, Adhikari K, Thomas G, Buirchell B, Sweetingham M, Yan G (2010) Development of sequence-specific PCR markers associated with a polygenic controlled trait for marker-assisted selection using a modified selective genotyping strategy: a case study on anthracnose disease resistance in white lupin (Lupinus albus L.). Mol Breed 25:239–249Google Scholar
  365. You M, Boersma JG, Buirchell BJ, Sweetingham MW, Siddique KHM, Yang H (2005) A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding. Cel Mol Biol Lett 10:123–134Google Scholar
  366. Yuan S, Chang SK, Liu Z, Xu B (2008) Elimination of trypsin inhibitor activity and beany flavor in soy milk by consecutive blanching and ultrahigh-temperature (UHT) processing. J Agric Food Chem 56:7957–7963PubMedGoogle Scholar
  367. Zgagacz SE, Rybczyński JJ (1996) Different in vitro responses of three species of lupine. Genet Pol 37A:133–135Google Scholar
  368. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bogdan Wolko
    • 1
  • Jon C. Clements
  • Barbara Naganowska
  • Matthew N. Nelson
  • Hua’an Yang
  1. 1.Institute of Plant Genetics Polish Academy of SciencesPoznańPoland

Personalised recommendations