Peroxisomal Transport Systems: Roles in Signaling and Metabolism

  • Frederica L. TheodoulouEmail author
  • Xuebin Zhang
  • Carine De Marcos Lousa
  • Yvonne Nyathi
  • Alison Baker
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 7)


Peroxisomes perform a range of different functions, including β-oxidation of fatty acids and synthesis and degradation of bioactive molecules. A notable feature of peroxisomes is their role in metabolic pathways which are shared between several subcellular compartments, including mitochondria, chloroplasts and cytosol. Transport across the peroxisomal membrane is therefore central to the co-ordination of metabolism. Although transport processes are required for import of substrates and cofactors, export of intermediates and products and the operation of redox shuttles, relatively few peroxisomal transporters have been identified to date. This chapter reviews the current evidence for and against different peroxisomal transport processes.


Cystic Fibrosis Transmembrane Conductance Regulator Indole Acetic Acid Jasmonic Acid Indole Butyric Acid Glyoxylate Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Antonenkov VD, Hiltunen JK (2006) Peroxisomal membrane permeability and solute transfer. Biochim Biophys Acta 1763:1697–1706PubMedCrossRefGoogle Scholar
  2. Antonenkov VD, Sormunen RT, Hiltunen JK (2004a) The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro. J Cell Sci 117:5633–5642PubMedCrossRefGoogle Scholar
  3. Antonenkov VD, Sormunen RT, Hiltunen JK (2004b) The behavior of peroxisomes in vitro: mammalian peroxisomes are osmotically sensitive particles. Am J Physiol Cell Physiol 287:C1623–C1635PubMedCrossRefGoogle Scholar
  4. Antonenkov VD, Rokka A, Sormunen RT, Benz R, Hiltunen JK (2005) Solute traffic across mammalian peroxisomal membrane – single channel conductance monitoring reveals pore-forming activities in peroxisomes. Cell Mol Life Sci 62:2886–2895PubMedCrossRefGoogle Scholar
  5. Antonenkov VD, Mindthoff S, Grunau S, Erdmann R, Hiltunen JK (2009) An involvement of yeast peroxisomal channels in transmembrane transfer of glyoxylate cycle intermediates. Int J Biochem Cell Biol 41:2546–2554PubMedCrossRefGoogle Scholar
  6. Arai Y, Hayashi M, Nishimura M (2008a) Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. Plant Cell Physiol 49:526–539PubMedCrossRefGoogle Scholar
  7. Arai Y, Hayashi M, Nishimura M (2008b) Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. Plant Cell 20:3227–3240PubMedCrossRefGoogle Scholar
  8. Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A, Reumann S (2010) The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J Exp Bot 61:1441–1453PubMedCrossRefGoogle Scholar
  9. Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL (2006) Chewing the fat: beta-oxidation in signalling and development. Trends Plant Sci 11:124–132PubMedCrossRefGoogle Scholar
  10. Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106PubMedCrossRefGoogle Scholar
  11. Byrne RS, Hänsch R, Mendel RR, Hille R (2009) Oxidative half-reaction of Arabidopsis thaliana sulfite oxidase: generation of superoxide by a peroxisomal enzyme. J Biol Chem 284:35479–35484PubMedCrossRefGoogle Scholar
  12. Carrera E, Holman T, Medhurst A, Peer W, Schmuths H, Footitt S, Theodoulou FL, Holdsworth MJ (2007) Gene expression profiling reveals defined functions of the ATP-binding cassette transporter COMATOSE late in phase II of germination. Plant Physiol 143:1669–1679PubMedCrossRefGoogle Scholar
  13. Carrie C, Murcha MW, Kuehn K, Duncan O, Barthet M, Smith PM, Eubel H, Meyer E, Day DA, Millar AH, Whelan J (2008) Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana.. FEBS Lett 582:3073–3079PubMedCrossRefGoogle Scholar
  14. Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101PubMedCrossRefGoogle Scholar
  15. Cornah JE, Germain V, Ward JL, Beale MH, Smith SM (2004) Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase. J Biol Chem 279:42916–42923PubMedCrossRefGoogle Scholar
  16. Corpas FJ, Barroso JB, Sandalio LM, Distefano S, Palma JM, Lupiáñez JA, Del Río LA (1998) A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochem J 330:777–784PubMedGoogle Scholar
  17. Corpas FJ, Barroso JB, Sandalio LM, Palma JM, Lupiáñez JA, del Río LA (1999) Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol 121:921–928PubMedCrossRefGoogle Scholar
  18. Corpas FJ, Hayashi M, Mano S, Nishimura M, Barroso JB (2009) Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol 151:2083–2094PubMedCrossRefGoogle Scholar
  19. Cousins AB, Pracharoenwattana I, Zhou W, Smith SM, Badger MR (2008) Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Plant Physiol 148:786–795PubMedCrossRefGoogle Scholar
  20. Dansen TB, Wirtz KW, Wanders RJ, Pap EH (2000) Peroxisomes in human fibroblasts have a basic pH. Nat Cell Biol 2:51–53PubMedCrossRefGoogle Scholar
  21. Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–1166PubMedCrossRefGoogle Scholar
  22. del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signalling. Plant Physiol 141:330–335PubMedCrossRefGoogle Scholar
  23. Dietrich D, Schmuths H, Lousa Cde M, Baldwin JM, Baldwin SA, Baker A, Theodoulou FL, Holdsworth MJ (2009) Mutations in the Arabidopsis peroxisomal ABC transporter COMATOSE allow differentiation between multiple functions in planta: insights from an allelic series. Mol Biol Cell 20:530–543PubMedCrossRefGoogle Scholar
  24. Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218PubMedCrossRefGoogle Scholar
  25. Eastmond PJ (2006) SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18:665–675PubMedCrossRefGoogle Scholar
  26. Eastmond PJ, Germain V, Lange PR, Bryce JH, Smith SM, Graham IA (2000) Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. Proc Natl Acad Sci USA 97:5669–5674PubMedCrossRefGoogle Scholar
  27. Erdmann R, Veenhuis M, Kunau WH (1997) Peroxisomes: organelles at the crossroads. Trends Cell Biol 7:400–407PubMedCrossRefGoogle Scholar
  28. Eubel H, Meyer EH, Taylor NL, Bussell JD, O'Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829PubMedCrossRefGoogle Scholar
  29. Footitt S, Slocombe SP, Larner V, Kurup S, Wu Y, Larson T, Graham I, Baker A, Holdsworth M (2002) Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J 21:2912–2922PubMedCrossRefGoogle Scholar
  30. Footitt S, Marquez J, Schmuths H, Baker A, Theodoulou FL, Holdsworth M (2006) Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis. J Exp Bot 57:2805–2814PubMedCrossRefGoogle Scholar
  31. Footitt S, Dietrich D, Fait A, Fernie AR, Holdsworth MJ, Baker A, Theodoulou FL (2007a) The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant Physiol 144:1467–1480PubMedCrossRefGoogle Scholar
  32. Footitt S, Cornah JE, Pracharoenwattana I, Bryce JH, Smith SM (2007b) The Arabidopsis 3-ketoacyl-CoA thiolase-2 (kat2-1) mutant exhibits increased flowering but reduced reproductive success. J Exp Bot 58:2959–2968PubMedCrossRefGoogle Scholar
  33. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  34. Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signalling. Annu Rev Plant Biol 60:455–484PubMedCrossRefGoogle Scholar
  35. Fulda M, Shockey J, Werber M, Wolter FP, Heinz E (2002) Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation. Plant J 32:93–103PubMedCrossRefGoogle Scholar
  36. Fulda M, Schnurr J, Abbadi A, Heinz E, Browse J (2004) Peroxisomal Acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant Cell 16:394–405PubMedCrossRefGoogle Scholar
  37. Goepfert S, Poirier Y (2007) Beta-oxidation in fatty acid degradation and beyond. Curr Opin Plant Biol 10:245–251PubMedCrossRefGoogle Scholar
  38. Goyer A, Johnson TL, Olsen LJ, Collakova E, Shachar-Hill Y, Rhodes D, Hanson AD (2004) Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J Biol Chem 279:16947–16953PubMedCrossRefGoogle Scholar
  39. Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142PubMedCrossRefGoogle Scholar
  40. Graham IA, Eastmond PJ (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res 41:156–181PubMedCrossRefGoogle Scholar
  41. Graham IA, Li Y, Larson TR (2002) Acyl-CoA measurements in plants suggest a role in regulating various cellular processes. Biochem Soc Trans 30:1095–1099PubMedCrossRefGoogle Scholar
  42. Grunau S, Mindthoff S, Rottensteiner H, Sormunen RT, Hiltunen JK, Erdmann R, Antonenkov VD (2009) Channel-forming activities of peroxisomal membrane proteins from the yeast Saccharomyces cerevisiae.. FEBS J 276:1698–1708PubMedCrossRefGoogle Scholar
  43. Hänsch R, Mendel RR (2005) Sulfite oxidation in plant peroxisomes. Photosynth Res 86:337–343PubMedCrossRefGoogle Scholar
  44. Hänsch R, Lang C, Riebeseel E, Lindigkeit R, Gessler A, Rennenberg H, Mendel RR (2006) Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent non-enzymatic reaction step. J Biol Chem 281:6884–6888PubMedCrossRefGoogle Scholar
  45. Hayashi M, Toriyama K, Kondo M, Nishimura M (1998) 2, 4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid beta-oxidation. Plant Cell 10:183–195PubMedGoogle Scholar
  46. Hayashi M, Nito K, Takei-Hoshi R, Yagi M, Kondo M, Suenaga A, Yamaya T, Nishimura M (2002) Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid beta-oxidation. Plant Cell Physiol 43:1–11PubMedCrossRefGoogle Scholar
  47. Hayashi M, Nishimura M (2006) Arabidopsis thaliana–a model organism to study plant peroxisomes. Biochim Biophys Acta 1763:1382–1391PubMedCrossRefGoogle Scholar
  48. Hennebry SC, Wright HM, Likic VA, Richardson SJ (2006) Structural and functional evolution of transthyretin and transthyretin-like proteins. Proteins 64:1024–1045PubMedCrossRefGoogle Scholar
  49. Hettema EH, van Roermund CW, Distel B, van den Berg M, Vilela C, Rodrigues-Pousada C, Wanders RJ, Tabak HF (1996) The ABC transporter proteins Pat1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae.. EMBO J 15:3813–3822PubMedGoogle Scholar
  50. Heupel R, Heldt HW (1994) Protein organization in the matrix of leaf peroxisomes. A multi-enzyme complex involved in photorespiratory metabolism. Eur J Biochem 220:165–172PubMedCrossRefGoogle Scholar
  51. Hooks MA, Turner JE, Murphy EC, Johnston KA, Burr S, Jarosławski S (2007) The Arabidopsis ALDP protein homologue COMATOSE is instrumental in peroxisomal acetate metabolism. Biochem J 406:399–406PubMedCrossRefGoogle Scholar
  52. Hunt MC, Alexson SE (2008) Novel functions of acyl-CoA thioesterases and acyltransferases as auxiliary enzymes in peroxisomal lipid metabolism. Prog Lipid Res 7:405–421CrossRefGoogle Scholar
  53. Ishizaki K, Larson TR, Schauer N, Fernie AR, Graham IA, Leaver CJ (2005) The critical role of Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase during dark-induced starvation. Plant Cell 17:2587–2600PubMedCrossRefGoogle Scholar
  54. Jankowski A, Kim JH, Collins RF, Daneman R, Walton P, Grinstein S (2001) In situ measurements of the pH of mammalian peroxisomes using the fluorescent protein pHluorin. J Biol Chem 276:48748–48753PubMedCrossRefGoogle Scholar
  55. Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana.. Plant Cell Physiol 49:1272–1282PubMedCrossRefGoogle Scholar
  56. Kanai M, Nishimura M, Hayashi M (2010) A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of ABI5. Plant J 62(6):936–947PubMedGoogle Scholar
  57. Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. In The Arabidopsis book, American Society of Plant Biologists, Rockville, MD. doi:  10.1199/tab.0123, Accessed 11 Sep 2009
  58. Kienow L, Schneider K, Bartsch M, Stuible HP, Weng H, Miersch O, Wasternack C, Kombrink E (2008) Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana.. J Exp Bot 59:403–419PubMedCrossRefGoogle Scholar
  59. Knoop F (1904) Der Abbau aromatischer Fettsöuren im Tierkörper. Beitr Chem Physiol Pathol 6:150–162Google Scholar
  60. Koo AJ, Howe GA (2007) Role of peroxisomal beta-oxidation in the production of plant signaling compounds. Plant Signal Behav 2:20–22PubMedCrossRefGoogle Scholar
  61. Kunz HH, Scharnewski M, Feussner K, Feussner I, Flügge UI, Fulda M, Gierth M (2009) The ABC transporter PXA1 and peroxisomal beta-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness. Plant Cell 21:2733–2749PubMedCrossRefGoogle Scholar
  62. Kunze M, Pracharoenwattana I, Smith SM, Hartig A (2006) A central role for the peroxisomal membrane in glyoxylate cycle function. Biochim Biophys Acta 1763:1441–1452PubMedCrossRefGoogle Scholar
  63. Lang C, Popko J, Wirtz M, Hell R, Herschbach C, Kreuzwieser J, Rennenberg H, Mendel RR, Hänsch R (2007) Sulphite oxidase as key enzyme for protecting plants against sulphur dioxide. Plant Cell Environ 30:447–455PubMedCrossRefGoogle Scholar
  64. Lange PR, Eastmond PJ, Madagan K, Graham IA (2004) An Arabidopsis mutant disrupted in valine catabolism is also compromised in peroxisomal fatty acid beta-oxidation. FEBS Lett 571:147–153PubMedCrossRefGoogle Scholar
  65. Lanyon-Hogg T, Warriner SL, Baker A (2010) Getting a camel through the eye of a needle: the import of folded proteins into peroxisomes. Biol Cell 102:245–263PubMedCrossRefGoogle Scholar
  66. Lasorsa FM, Scarcia P, Erdmann R, Palmieri F, Rottensteiner H, Palmieri L (2004) The yeast peroxisomal adenine nucleotide transporter: characterization of two transport modes and involvement in Delta pH formation across peroxisomal membranes. Biochem J 381:581–585PubMedCrossRefGoogle Scholar
  67. Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183PubMedCrossRefGoogle Scholar
  68. Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, Weber AP (2008) Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana.. Plant Cell 20:3241–3257PubMedCrossRefGoogle Scholar
  69. Ljun K, Hul AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50:309–332PubMedCrossRefGoogle Scholar
  70. Lucas KA, Filley JR, Erb JM, Graybill ER, Hawes JW (2007) Peroxisomal metabolism of propionic acid and isobutyric acid in plants. J Biol Chem 282:24980–24989PubMedCrossRefGoogle Scholar
  71. Martin T, Oswald O, Graham IA (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol 128:472–481PubMedCrossRefGoogle Scholar
  72. Mettler IJ, Beevers H (1980) Oxidation of NADH in glyoxysomes by a malate–aspartate shuttle. Plant Physiol 66:555–560PubMedCrossRefGoogle Scholar
  73. Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857PubMedCrossRefGoogle Scholar
  74. Nakamura T, Meyer C, Sano H (2002) Molecular cloning and characterization of plant genes encoding novel peroxisomal molybdoenzymes of the sulphite oxidase family. J Exp Bot 53:1833–1836PubMedCrossRefGoogle Scholar
  75. Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425PubMedCrossRefGoogle Scholar
  76. Nowak K, Luniak N, Witt C, Wüstefeld Y, Wachter A, Mendel RR, Hänsch R (2004) Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation. Plant Cell Physiol 45:1889–1894PubMedCrossRefGoogle Scholar
  77. Nyathi Y, Baker A (2006) Plant peroxisomes as a source of signalling molecules. Biochim Biophys Acta 1763:1478–1495PubMedCrossRefGoogle Scholar
  78. Nyathi Y, De Marcos Lousa C, van Roermund CW, Wanders RJ, Johnson B, Baldwin SA, Theodoulou FL, Baker A (2010) The Arabidopsis peroxisomal ABC transporter, comatose, complements the Saccharomyces cerevisiae pxa1 pxa2Δ mutant for metabolism of long chain fatty acids and exhibits fatty acyl-CoA stimulated ATPase activity. J Biol Chem (in press)Google Scholar
  79. Ozimek P, van Dijk R, Latchev K, Gancedo C, Wang DY, van der Klei IJ, Veenhuis M (2003) Pyruvate carboxylase is an essential protein in the assembly of yeast peroxisomal oligomeric alcohol oxidase. Mol Biol Cell 14:786–797PubMedCrossRefGoogle Scholar
  80. Palmieri L, Rottensteiner H, Girzalsky W, Scarcia P, Palmieri F, Erdmann R (2001) Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J 20:5049–5059PubMedCrossRefGoogle Scholar
  81. Pinfield-Wells H, Rylott EL, Gilday AD, Graham S, Job K, Larson TR, Graham IA (2005) Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J 43:861–872PubMedCrossRefGoogle Scholar
  82. Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006) Peroxisomal beta-oxidation–a metabolic pathway with multiple functions. Biochim Biophys Acta 1763:1413–1426PubMedCrossRefGoogle Scholar
  83. Pracharoenwattana I, Cornah JE, Smith SM (2005) Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17:2037–2048PubMedCrossRefGoogle Scholar
  84. Pracharoenwattana I, Cornah JE, Smith SM (2007) Arabidopsis peroxisomal malate dehydrogenase functions in beta-oxidation but not in the glyoxylate cycle. Plant J 50:381–390PubMedCrossRefGoogle Scholar
  85. Pracharoenwattana I, Zhou W, Smith SM (2010) Fatty acid beta-oxidation in germinating Arabidopsis seeds is supported by peroxisomal hydroxypyruvate reductase when malate dehydrogenase is absent. Plant Mol Biol 72:101–109PubMedCrossRefGoogle Scholar
  86. Prado AM, Porterfield DM, Feijó JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714PubMedCrossRefGoogle Scholar
  87. Price NC, Dwek RA, Ratcliffe RG, Wormald MR (2001) Principles and problems in physical chemistry for biochemists. Oxford University Press, Oxford, p401Google Scholar
  88. Reumann S (2000) The structural properties of plant peroxisomes and their metabolic significance. Biol Chem 381:639–648PubMedCrossRefGoogle Scholar
  89. Reumann S, Weber AP (2006) Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled–others remain. Biochim Biophys Acta 1763:1496–1510PubMedCrossRefGoogle Scholar
  90. Reumann S, Maier E, Benz R, Heldt HW (1995) The membrane of leaf peroxisomes contains a porin-like channel. J Biol Chem 270:17559–17565PubMedCrossRefGoogle Scholar
  91. Reumann S, Bettermann M, Benz R, Heldt HW (1997) Evidence for the presence of a porin in the membrane of glyoxysomes of castor bean. Plant Physiol 115:891–899PubMedGoogle Scholar
  92. Reumann S, Maier E, Heldt HW, Benz R (1998) Permeability properties of the porin of spinach leaf peroxisomes. Eur J Biochem 251:359–366PubMedCrossRefGoogle Scholar
  93. Reumann S, Ma C, Lemke S, Babujee L (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136:2587–2608PubMedCrossRefGoogle Scholar
  94. Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Lüder F, Weckwerth W, Jahn O (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193PubMedCrossRefGoogle Scholar
  95. Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143PubMedCrossRefGoogle Scholar
  96. Richmond TA, Bleecker AB (1999) A defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11:1911–1924PubMedGoogle Scholar
  97. Rottensteiner H, Theodoulou FL (2006) The ins and outs of peroxisomes: co-ordination of membrane transport and peroxisomal metabolism. Biochim Biophys Acta 1763:1527–1540PubMedCrossRefGoogle Scholar
  98. Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirilä PL, Bergmann U, Sormunen RT, Weckström M, Benz R, Hiltunen JK (2009) Pxmp2 is a channel-forming protein in mammalian peroxisomal membrane. PLoS ONE 4:e5090PubMedCrossRefGoogle Scholar
  99. Rubio S, Larson TR, Gonzalez-Guzman M, Alejandro S, Graham IA, Serrano R, Rodriguez PL (2006) An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment. Plant Physiol 140:830–843PubMedCrossRefGoogle Scholar
  100. Russell L, Larner V, Kurup S, Bougourd S, Holdsworth M (2000) The Arabidopsis COMATOSE locus regulates germination potential. Development 127:3759–3767PubMedGoogle Scholar
  101. Rylott EL, Rogers CA, Gilday AD, Edgell T, Larson TR, Graham IA (2003) Arabidopsis mutants in short- and medium-chain acyl-CoA oxidase activities accumulate acyl-CoAs and reveal that fatty acid beta-oxidation is essential for embryo development. J Biol Chem 278:21370–21377PubMedCrossRefGoogle Scholar
  102. Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, Gidoni D, Eyal Y (2008) Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiol 148:1219–1228PubMedCrossRefGoogle Scholar
  103. Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis – structure, function, regulation. Phytochemistry 70:1532–1538PubMedCrossRefGoogle Scholar
  104. Schmitt MR, Edwards GE (1983) Provisions of reductant for the hydroxypyruvate to glycerate conversion in leaf peroxisomes: a critical evaluation of the proposed malate/aspartate shuttle. Plant Physiol 72:728–734PubMedCrossRefGoogle Scholar
  105. Shani N, Watkins PA, Valle D (1995) PXA1, a possible Saccharomyces cerevisiae ortholog of the human adrenoleukodystrophy gene. Proc Natl Acad Sci USA 92:6012–6016PubMedCrossRefGoogle Scholar
  106. Shani N, Valle D (1996) A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters. Proc Natl Acad Sci USA 93:11901–11906PubMedCrossRefGoogle Scholar
  107. Shockey JM, Fulda MS, Browse J (2003) Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme a synthetases. Plant Physiol 132:1065–1076PubMedCrossRefGoogle Scholar
  108. Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A, Dyer JM, Graham IA (2009) Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol J 7:694–703PubMedCrossRefGoogle Scholar
  109. Strader LC, Culler AH, Cohen JD, Bartel B (2010) Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Plant Physiol 153:1577–1586PubMedCrossRefGoogle Scholar
  110. Sulter GJ, Verheyden K, Mannaerts G, Harder W, Veenhuis M (1993) The in vitro permeability of yeast peroxisomal membranes is caused by a 31 kDa integral membrane protein. Yeast 9:733–742PubMedCrossRefGoogle Scholar
  111. Swartzman EE, Viswanathan MN, Thorner J (1996) The PAL1 gene product is a peroxisomal ATP-binding cassette transporter in the yeast Saccharomyces cerevisiae.. J Cell Biol 132:549–563PubMedCrossRefGoogle Scholar
  112. Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D (2004) Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16:172–184PubMedCrossRefGoogle Scholar
  113. Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840PubMedCrossRefGoogle Scholar
  114. Timm S, Nunes-Nesi A, Pärnik T, Morgenthal K, Wienkoop S, Keerberg O, Weckwerth W, Kleczkowski LA, Fernie AR, Bauwe H (2008) A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20:2848–2859PubMedCrossRefGoogle Scholar
  115. Titorenko VI, Nicaud JM, Wang H, Chan H, Rachubinski RA (2002) Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica.. J Cell Biol 156:481–494PubMedCrossRefGoogle Scholar
  116. Tugal HB, Pool M, Baker A (1999) Arabidopsis 22-kilodalton peroxisomal membrane protein. Nucleotide sequence analysis and biochemical characterization. Plant Physiol 120:309–320PubMedCrossRefGoogle Scholar
  117. Turner JE, Greville K, Murphy EC, Hooks MA (2005) Characterization of Arabidopsis fluoroacetate-resistant mutants reveals the principal mechanism of acetate activation for entry into the glyoxylate cyclel. J Biol Chem 280:2780–2787PubMedCrossRefGoogle Scholar
  118. Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thalianal. Plant J 39:45–58PubMedCrossRefGoogle Scholar
  119. van der Klei IJ, Harder W, Veenhuis M (1991) Methanol metabolism in a peroxisome-deficient mutant of Hansenula polymorpha: a physiological study. Arch Microbiol 156:15–23PubMedCrossRefGoogle Scholar
  120. van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditionsl. EMBO J 14:3480–3486PubMedGoogle Scholar
  121. van Roermund CW, Hettema EH, Kal AJ, van den Berg M, Tabak HF, Wanders RJ (1998) Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positionsl. EMBO J 17:677–687PubMedCrossRefGoogle Scholar
  122. van Roermund CW, Hettema EH, van den Berg M, Tabak HF, Wanders RJ (1999) Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2pl. EMBO J 18:5843–5852PubMedCrossRefGoogle Scholar
  123. van Roermund CW, Tabak HF, van Den Berg M, Wanders RJ, Hettema EH (2000) Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiael. J Cell Biol 150:489–498PubMedCrossRefGoogle Scholar
  124. van Roermund CW, de Jong M, Ijlst L, van Marle J, Dansen TB, Wanders RJ, Waterham HR (2004) The peroxisomal lumen in Saccharomyces cerevisiae is alkalinel. J Cell Sci 117:4231–4237PubMedCrossRefGoogle Scholar
  125. Van Veldhoven PP, Just WW, Mannaerts GP (1987) Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming proteinl. J Biol Chem 262:4310–4318PubMedGoogle Scholar
  126. Verleur N, Wanders RJ (1993) Permeability properties of peroxisomes in digitonin-permeabilized rat hepatocytes. Evidence for free permeability towards a variety of substratesl. Eur J Biochem 218:75–82PubMedCrossRefGoogle Scholar
  127. Verleur N, Hettema EH, van Roermund CW, Tabak HF, Wanders RJ (1997a) Transport of activated fatty acids by the peroxisomal ATP-binding-cassette transporter Pxa2 in a semi-intact yeast cell systeml. Eur J Biochem 249:657–661PubMedCrossRefGoogle Scholar
  128. Verleur N, Elgersma Y, Van Roermund CW, Tabak HF, Wanders RJ (1997b) Cytosolic aspartate aminotransferase encoded by the AAT2 gene is targeted to the peroxisomes in oleate-grown Saccharomyces cerevisiael. Eur J Biochem 247:972–980PubMedCrossRefGoogle Scholar
  129. Visser WF, Van Roermund CW, Ijlst L, Hellingwerf KJ, Wanders RJ, Waterham HR (2005) Demonstration and characterization of phosphate transport in mammalian peroxisomesl. Biochem J 389:717–722PubMedCrossRefGoogle Scholar
  130. Visser WF, van Roermund CW, Ijlst L, Waterham HR, Wanders RJ (2007) Metabolite transport across the peroxisomal membranel. Biochem J 401:365–375PubMedCrossRefGoogle Scholar
  131. Westphal L, Scheel D, Rosahl S (2008) The coi1-16 mutant harbors a second site mutation rendering PEN2 nonfunctional. Plant Cell 20:824–826PubMedCrossRefGoogle Scholar
  132. Wiszniewski AA, Zhou W, Smith SM, Bussell JD (2009) Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxinsl. Plant Mol Biol 69:503–515PubMedCrossRefGoogle Scholar
  133. Zolman BK, Yoder A, Bartel B (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classesl. Genetics 156:1323–1337PubMedGoogle Scholar
  134. Zolman BK, Silva ID, Bartel B (2001a) The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidationl. Plant Physiol 127:1266–1278PubMedCrossRefGoogle Scholar
  135. Zolman BK, Monroe-Augustus M, Thompson B, Hawes JW, Krukenberg KA, Matsuda SP, Bartel B (2001b) chy1, an Arabidopsis mutant with impaired beta-oxidation, is defective in a peroxisomal beta-hydroxyisobutyryl-CoA hydrolasel. J Biol Chem 276:31037–31046PubMedCrossRefGoogle Scholar
  136. Zolman BK, Nyberg M, Bartel B (2007) IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid responsel. Plant Mol Biol 64:59–72PubMedCrossRefGoogle Scholar
  137. Zolman BK, Martinez N, Millius A, Adham AR, Bartel B (2008) Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymesl. Genetics 180:237–251PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Frederica L. Theodoulou
    • 1
    Email author
  • Xuebin Zhang
    • 1
  • Carine De Marcos Lousa
    • 2
  • Yvonne Nyathi
    • 2
  • Alison Baker
    • 2
  1. 1.Biological Chemistry DepartmentRothamsted ResearchHarpendenUK
  2. 2.Centre for Plant SciencesUniversity of LeedsLeedsUK

Personalised recommendations