Continuity Order of Local Displacement in Volumetric Image Sequence

  • Koji Kashu
  • Yusuke Kameda
  • Masaki Narita
  • Atsushi Imiya
  • Tomoya Sakai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6204)

Abstract

We introduce a method for volumetric cardiac motion analysis using variational optical flow computation involving the prior with the fractional order differentiations. The order of the differentiation of the prior controls the continuity class of the solution. Fractional differentiations is a typical tool for edge detection of images. As a sequel of image analysis by fractional differentiation, we apply the theory of fractional differentiation to a temporal image sequence analysis. Using the fractional order differentiations, we can estimate the orders of local continuities of optical flow vectors. Therefore, we can obtain the optical flow vector with the optimal continuity at each point.

Keywords

Fractional Order Fractional Derivative Motion Boundary Local Displacement Fractional Order Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sorzano, C.Ó.S., Thévenaz, P., Unser, M.: Elastic registration of biological images using vector-spline regularization. IEEE Tr. Biomedical Engineering 52, 652–663 (2005)CrossRefGoogle Scholar
  2. 2.
    Davis, J.A., Smith, D.A., McNamara, D.E., Cottrell, D.M., Campos, J.: Fractional derivatives-analysis and experimental implementation. Applied Optics 32, 5943–5948 (2001)CrossRefGoogle Scholar
  3. 3.
    Zhang, J., Wei, Z.-H.: Fractional variational model and algorithm for image denoising. In: Proceedings of 4th International Conference on Natural Computation, vol. 5, pp. 524–528 (2008)Google Scholar
  4. 4.
    Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory And Applications of Differentiation and Integration to Arbitrary Order, Dover Books on Mathematics. Dover, New York (2004)Google Scholar
  5. 5.
    Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, London (1999)Google Scholar
  6. 6.
    Suter, D.: Motion estimation and vector spline. In: Proceedings of CVPR 1994, pp. 939–942 (1994)Google Scholar
  7. 7.
    Suter, D., Chen, F.: Left ventricular motion reconstruction based on elastic vector splines. IEEE Tr. Medical Imaging, 295–305 (2000)Google Scholar
  8. 8.
    Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraint for the estimation of displacement vector fields from image sequences. IEEE Trans. on PAMI 8, 565–593 (1986)Google Scholar
  9. 9.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar
  10. 10.
    Timoshenko, S.P.: History of Strength of Materials. Dover, New York (1983)Google Scholar
  11. 11.
    Grenander, U., Miller, M.: Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics 4, 617–694 (1998)MathSciNetGoogle Scholar
  12. 12.
    Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. IJCV 67, 141–158 (2006)CrossRefGoogle Scholar
  13. 13.
    Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based texture extraction models. J. Visual Communication and Image Representation 18, 240–252 (2007)CrossRefGoogle Scholar
  14. 14.
    Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55, 293–318 (1992)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Modersitzki, J.: Numerical Methods for Image Registration. Oxford Univ. Pr., Oxford (2004)MATHGoogle Scholar
  16. 16.
    Momani, S., Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons and Fractals 31, 1248–1255 (2007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Murio, D.A.: Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Problems in Science and Engineering 17, 229–243 (2009)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Debbi, L.: Explicit solutions of some fractional partial differential equations via stable subordinators. J. of Applied Mathematics and Stochastic Analysis, Article ID 93502 2006, 1–18 (2006)CrossRefGoogle Scholar
  19. 19.
    Debbi, L.: On some properties of a high order fractional differential operator which is not in general selfadjoint. Applied Mathematical Sciences 1, 1325–1339 (2007)MATHMathSciNetGoogle Scholar
  20. 20.
    Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Fractional diffusion in inhomogeneous media. J. Phys. A: Math. Gen. 38, L679–L684 (2005)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Duits, R., Felsberg, M., Florack, L.M.J., Platel, B.: α scale spaces on a bounded domain. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 502–518. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. IJCV 67, 141–158 (2006)CrossRefGoogle Scholar
  23. 23.
    Ortiguera, M.D.: Riesz potential operations and inverses via fractional centred derivatives. International Journal of Mathematics and Mathematical Sciences, Article ID 48391, 1–12 (2008)Google Scholar
  24. 24.
    Krueger, W.M., Phillips, K.: The geometry of differential operator with application to image processing. PAMI 11, 1252–1264 (1989)Google Scholar
  25. 25.
    Unser, M., Blu, T.: Fractional spline and wavelets. SIAM Review 43, 43–67 (2000)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Koji Kashu
    • 1
  • Yusuke Kameda
    • 2
  • Masaki Narita
    • 1
  • Atsushi Imiya
    • 3
  • Tomoya Sakai
    • 3
  1. 1.School of Advanced Integration ScienceChiba University 
  2. 2.JSPS/School of Advanced Integration ScienceChiba University 
  3. 3.Institute of Media and Information TechnologyChiba UniversityChibaJapan

Personalised recommendations