Cardiac Respiratory Motion Modelling by Simultaneous Registration and Modelling from Dynamic MRI Images

  • A. P. King
  • C. Buerger
  • T. Schaeffter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6204)

Abstract

Motion models have been widely applied as a solution to the problem of organ motion in both image acquisition and image guided interventions. The traditional approach to constructing motion models from dynamic images involves first coregistering the images to produce estimates of motion parameters, and then modelling the variation of these parameters as functions of a surrogate value or values. Errors in this approach can result from inaccuracies in the image registrations and in the modelling process. In this paper we describe an approach in which the registrations of all images and the modelling process are performed simultaneously. Using numerical phantom data and 21 dynamic magnetic resonance imaging (MRI) datasets acquired from 7 volunteers and 7 patients, we demonstrate that our new technique results in an average reduction in motion model errors of 11.5% for the phantom experiments and 1.8% for the MRI experiments. This approach has the potential to improve the accuracy of motion estimates for a range of applications.

Keywords

Respiration Coreg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manke, D., Rosch, P., Nehrke, K., Bornert, P., Dossel, O.: Model evaluation and calibration for prospective respiratory motion correction in coronary MR angiography based on 3-D image registration. IEEE Transactions on Medical Imaging 21(9), 1132–1141 (2002)CrossRefGoogle Scholar
  2. 2.
    Shechter, G., Shechter, B., Resar, J.R., Beyar, R.: Prospective motion correction of X-ray images for coronary interventions. IEEE Transactions on Medical Imaging 24(4), 441–450 (2005)CrossRefGoogle Scholar
  3. 3.
    King, A.P., Boubertakh, R., Rhode, K.S., Ma, Y.L., Chinchapatnam, P., Gao, G., Tangcharoen, T., Ginks, M., Cooklin, M., Gill, J.S., Hawkes, D.J., Razavi, R.S., Schaeffter, T.: A subject-specific technique for respiratory motion correction in image-guided cardiac catheterisation procedures. Medical Image Analysis 13(3), 419–431 (2009)CrossRefGoogle Scholar
  4. 4.
    Schreibmann, E., Thorndyke, B., Li, T., Wang, J., Xing, L.: Four-dimensional image registration for image-guided radiotherapy. Int. J. Radiation Oncology Biol. Phys. 71(2), 578–586 (2008)Google Scholar
  5. 5.
    Peyrat, J.M., Delingette, H., Sermesant, M., Pennec, X., Xu, C.Y., Ayache, N.: Registration of 4D time-series of cardiac images with multichannel diffeomorphic demons. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 972–979. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Klein, G.J., Huesman, R.H.: Four-dimensional processing of deformable cardiac pet data. Medical Image Analysis 6(1), 29–46 (2002)CrossRefGoogle Scholar
  7. 7.
    Shen, D., Sundar, H., Xue, Z., Fan, Y., Litt, H.: Consistent estimation of cardiac motions by 4D image registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 902–910. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Castillo, E., Castillo, R., Martinez, J., Shenoy, M., Guerrero, T.: Four-dimensional deformable image registration using trajectory modelling. Physics in Medicine and Biology 55, 305–327 (2010)CrossRefGoogle Scholar
  9. 9.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  10. 10.
    King, A.P., Rhode, K.S., Razavi, R.S., Schaeffter, T.R.: An adaptive and predictive respiratory motion model for image-guided interventions: Theory and first clinical application. IEEE Transactions on Medical Imaging 28(12), 2020–2032 (2009)CrossRefGoogle Scholar
  11. 11.
    Hinkle, J., Fletcher, P.T., Wang, B., Salter, B., Joshi, S.H.: 4D MAP image reconstruction incorporating organ motion. In: Proceedings IPMI, pp. 676–687 (2009)Google Scholar
  12. 12.
    Buerger, C., Schaeffter, T., King, A.P.: Hierarchical adaptive local affine registration for respiratory motion estimation from 3-D MRI. In: Proceedings ISBI, pp. 1237–1241 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. P. King
    • 1
  • C. Buerger
    • 1
  • T. Schaeffter
    • 1
  1. 1.Division of Imaging SciencesKing’s College LondonU.K.

Personalised recommendations