Advertisement

Evaluating Image Registration Using NIREP

  • Joo Hyun Song
  • Gary E. Christensen
  • Jeffrey A. Hawley
  • Ying Wei
  • Jon G. Kuhl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6204)

Abstract

This paper describes the functionality and use of the Non-rigid Image Registration Evaluation Program (NIREP) that was developed to make qualitative and quantitative performance comparisons between one or more image registration algorithms. Registration performance is evaluated using common evaluation databases. An evaluation database consists of groups of registered medical images (e.g., one or more MRI modalities, CT, etc.) and annotations (e.g., segmentations, landmarks, contours, etc.) identified by their common image coordinate system. Prior to analysis with NIREP, each algorithm is used to generate pair-wise correspondence maps/transformations between image coordinate systems. NIREP has a highly customizable graphical user interface for displaying images, transformations, segmentations, overlays, differences between images, and differences between transformations. Evaluation statistics built into NIREP are used to compute quantitative algorithm performance reports that include region of interest overlap, intensity variance of images mapped to a reference coordinate system, inverse consistency error and transitivity error.

Keywords

NIREP evaluation non-rigid image registration transformation medical imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Trans. Med. Imaging 20(7), 568–582 (2001)CrossRefGoogle Scholar
  2. 2.
    Christensen, G.E., Johnson, H.J.: Invertibility and transitivity analysis for nonrigid image registration. Journal of Electronic Imaging 12(1), 106–117 (2003)CrossRefGoogle Scholar
  3. 3.
    Johnson, H.J., Christensen, G.E.: Consistent landmark and intensity-based image registration. IEEE Trans. Med. Imaging 21(5), 450–461 (2002)CrossRefGoogle Scholar
  4. 4.
    Christensen, G.E.: Consistent linear-elastic transformations for image matching. In: Kuba, A., Sámal, M. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 224–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Cao, K.: Local lung tissue expansion analysis based on inverse consistent image registration. Master’s thesis, Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242 (May 2008)Google Scholar
  6. 6.
    Geng, X., Kumar, D., Christensen, G.E.: Transitive inverse-consistent manifold registration. In: Christensen, G.E., Sonka, M. (eds.) Information Processing in Medical Imaging. LNCS, vol. 3564, pp. 468–479. Springer, Berlin (2005)Google Scholar
  7. 7.
    Thirion, J.P.: Fast non-rigid matching of 3d medical images. Report 2547, Institut National De Recherche en Informatique Et En Automatique (May 1995)Google Scholar
  8. 8.
    Thirion, J.: Image matching as a diffusion process: an analogy with maxwell’s demons. Medical Image Analysis 2, 243–260 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joo Hyun Song
    • 1
  • Gary E. Christensen
    • 1
  • Jeffrey A. Hawley
    • 1
  • Ying Wei
    • 1
  • Jon G. Kuhl
    • 1
  1. 1.Electrical and Computer Engineering, and Iowa Institute for Biomedical ImagingThe University of IowaIowa CityUSA

Personalised recommendations