Unifying Vascular Information in Intensity-Based Nonrigid Lung CT Registration

  • Kunlin Cao
  • Kai Ding
  • Gary E. Christensen
  • Madhavan L. Raghavan
  • Ryan E. Amelon
  • Joseph M. Reinhardt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6204)

Abstract

Image registration plays an important role within pulmonary image analysis. Accurate registration is critical to post-analysis of lung mechanical properties. To improve registration accuracy, we utilize the rich information of vessel locations and shapes, and introduce a new similarity criterion, sum of squared vesselness measure difference (SSVMD). This metric is added to three existing intensity-based similarity criteria for nonrigid lung CT image registration to show its ability in improving matching accuracy. The registration accuracy is assessed by landmark error calculation and distance map visualization on vascular tree. The average landmark errors are reduced by over 20% and are within 0.7 mm after adding SSVMD constraint to three existing intensity-based similarity metrics. Visual inspection shows matching accuracy improvements in the lung regions near the thoracic cage and near the diaphragm. Experiments also show this vesselness constraint makes the Jacobian map of transformations physiologically more plausible and reliable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guerrero, T., Sanders, K., Castillo, E., Zhang, Y., Bidaut, L., Pan, T., Komaki, R.: Dynamic ventilation imaging from four-dimensional computed tomography. Phys. Med. Biol. 51(4), 777–791 (2006)CrossRefGoogle Scholar
  2. 2.
    Reinhardt, J.M., Ding, K., Cao, K., Christensen, G.E., Hoffman, E.A., Bodas, S.V.: Registration-based estimates of local lung tissue expansion compared to xenon-CT measures of specific ventilation. Medical Image Analysis 12(6), 752–763 (2008)CrossRefGoogle Scholar
  3. 3.
    Ding, K., Bayouth, J.E., Buatti, J.M., Christensen, G.E., Reinhardt, J.M.: 4DCT-based measurement of changes in pulmonary function following a course of radiation therapy. Medical Physics 37(3), 1261–1272 (2010)CrossRefGoogle Scholar
  4. 4.
    Coselmon, M.M., Balter, J.M., McShan, D.L., Kessler, M.L.: Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines. Medical Physics 31(11), 2942–2948 (2004)CrossRefGoogle Scholar
  5. 5.
    Christensen, G.E., Song, J.H., Lu, W., Naqa, I.E., Low, D.A.: Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry. Medical Physics 34(6), 2155–2165 (2007)CrossRefGoogle Scholar
  6. 6.
    Gorbunova, V., Lo, P., Ashraf, H., Dirksen, A., Nielsen, M., de Bruijne, M.: Weight preserving image registration for monitoring disease progression in lung CT. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 863–870. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Yin, Y., Hoffman, E.A., Lin, C.L.: Mass preserving non-rigid registration of CT lung images using cubic B-spline. Medical Physics 36(9), 4213–4222 (2009)CrossRefGoogle Scholar
  8. 8.
    Hu, S., Hoffman, E.A., Reinhardt, J.M.: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans. on Medical Imaging 20, 490–498 (2001)CrossRefGoogle Scholar
  9. 9.
    Murphy, K., van Ginneken, B., Pluim, J., Klein, S., Staring, M.: Semi-automatic reference standard construction for quantitative evaluation of lung CT registration. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1006–1013. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Thevenaz, P., Unser, M.: Spline pyramids for inter-modal image registration using mutual information. In: Proc. SPIE, vol. 3169, pp. 236–247 (1997)Google Scholar
  11. 11.
    Mattes, D., Haynor, D., Vesselle, H., Lewellen, T., Eubank, W.: PET-CT image registration in the chest using free-form deformations. IEEE Transactions on Medical Imaging 22(1), 120–128 (2003)CrossRefGoogle Scholar
  12. 12.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Choi, Y., Lee, S.: Injectivity conditions of 2d and 3d uniform cubic b-spline functions. Graphical Models 62(6), 411–427 (2000)MATHCrossRefGoogle Scholar
  15. 15.
    Guo, J., Fuld, M.K., Alford, S.K., Reinhardt, J.M., Hoffman, E.A.: Pulmonary analysis software suite 9.0: Integrating quantitative measures of function with structural analyses. In: First International Workshop on Pulmonary Image Analysis, New York, pp. 283–292 (2008)Google Scholar
  16. 16.
    Kabus, S., Klinder, T., Murphy, K., van Ginneken, B., Lorenz, C., Pluim, J.P.W.: Evaluation of 4D-CT lung registration. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 747–754. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kunlin Cao
    • 1
  • Kai Ding
    • 2
  • Gary E. Christensen
    • 1
  • Madhavan L. Raghavan
    • 2
  • Ryan E. Amelon
    • 2
  • Joseph M. Reinhardt
    • 1
  1. 1.Department of Electrical and Computer Engineering 
  2. 2.Department of Biomedical EngineeringThe University of IowaIowa City

Personalised recommendations