Advertisement

An Agent Based Model of the Nash Demand Game in Regular Lattices

  • David Poza
  • José Manuel Galán
  • José Ignacio Santos
  • Adolfo López-Paredes
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 322)

Abstract

In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. This work extends the multiagent bargaining model by [1] including the spatial dimension in the game. Each agent is endowed with memory and plays the best reply against the opponent’s most frequent demand. The results show that all the possible persistent regimes of the global interaction game can also be obtained with this spatial version. Our preliminary analysis also suggests that the topological distribution of the agents can generate new persistent regimes within groups of agents with the same tag.

Keywords

Agent-based modeling Nash demand game game theory negotiation segregation tags social norms 

References

  1. 1.
    Axtell, R.L., Epstein, J.M., Young, H.P.: The Emergence of Classes in a Multi-Agent Bargaining Model. In: Durlauf, S.N., Young, H.P. (eds.) Social Dynamics. MIT Press, Washington (2004)Google Scholar
  2. 2.
    Galán, J.M., Izquierdo, L.R., Izquierdo, S.S., et al.: Errors and artefacts in agent-based modelling. Journal of Artificial Societies and Social Simulation 12, 1 (2009)Google Scholar
  3. 3.
    Izquierdo, L.R., Galán, J.M., Santos, J.I., del Olmo, R.: Modelado de sistemas complejos mediante simulación basada en agentes y mediante dinámica de sistemas. EMPIRIA Revista de Metodología de Ciencias Sociales 16, 85–112 (2008)Google Scholar
  4. 4.
    López-Paredes, A., Hernández, C.: Agent-based modelling in Natural Resource Management. Insisoc, Madrid (2008)Google Scholar
  5. 5.
    Walker, D.C., Hill, G., Smallwood, R.H., Southgate, J.: Agent-based computational modelling of wounded epithelial cell monolayers. IEEE Transactions on Nanobioscience 3, 153–163 (2004)CrossRefGoogle Scholar
  6. 6.
    Araúzo-Araúzo, J.A., Galán-Ordax, J.M., Pajares-Gutiérrez, J., López-Paredes, A.: Gestión eficiente de carteras de proyectos. Propuesta de un sistema inteligente de soporte a la decisión para oficinas técnicas y empresas consultoras. DYNA Ingeniería e Industria 84, 761–772 (2009)Google Scholar
  7. 7.
    Coleman, J.S.: Foundations of social theory. Belknap Press of Harvard University Press, Cambridge (1994)Google Scholar
  8. 8.
    Galan, J.M., Izquierdo, L.R.: Appearances Can Be Deceiving: Lessons Learned Re-Implementing Axelrod’s ‘Evolutionary Approach to Norms’. Journal of Artificial Societies and Social Simulation 8, 2 (2005)Google Scholar
  9. 9.
    Poza, D., Villafáñez, F.A., Pajares, J.: Impact of Tag Recognition in Economic Decisions. In: Hernandez, C., Posada, M., López-Paredes, A. (eds.) Artificial Economics. The Generative Method in Economics. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Izquierdo, L.R., Izquierdo, S.S., Galán, J.M., Santos, J.I.: Techniques to understand computer simulations: Markov chain analysis. Journal of Artificial Societies and Social Simulation 12, 6 (2009)Google Scholar
  11. 11.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99, 7821–7826 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© IFIP 2010

Authors and Affiliations

  • David Poza
    • 1
  • José Manuel Galán
    • 2
  • José Ignacio Santos
    • 2
  • Adolfo López-Paredes
    • 1
  1. 1.Grupo INSISOC, Dpto. de Organización de Empresasy CIM, Escuela de Ingenierías IndustrialesUniversidad de ValladolidValladolid
  2. 2.Grupo INSISOC, Área de Organización de Empresas, Dpto. de Ingeniería Civil, Escuela Politécnica SuperiorUniversidad de Burgos, Edificio La MilaneraBurgos

Personalised recommendations