An Expert System for Inventory Replenishment Optimization

  • Ander Errasti
  • Claudia Chackelson
  • Raul Poler
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 322)


Companies survive in saturated markets trying to be more productive and more efficient. In this context, to manage more accurately the finished goods inventories becomes critical for make to stock production systems companies. In this paper an inventory replenishment expert system with the objectives of improving quality service and reducing holding costs is proposed. The Inventory Replenishment Expert System (IRES) is based on a periodic review inventory control and time series forecasting techniques. IRES propose the most effective replenishment strategy for each supply classed derived of an ABC-XYZ Analysis.


Supply Chain Model Predictive Control Mean Absolute Percentage Error Mean Absolute Deviation Demand Forecast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fildes, R., Nikolopoulos, K., Crone, S.F., Syntetos, A.A.: Forecasting and operational research: a review. Journal of the Operational Research Society 59(9), 1150–1172 (2008)zbMATHCrossRefGoogle Scholar
  2. 2.
    Voss, C., Tsikriktsis, N., Frohlich, M.: Case research in operations management. Int. J. Oper. Prod. Manage. 22(2), 195–219 (2002)CrossRefGoogle Scholar
  3. 3.
    Westbrook, R.: Action Research: a new paradigm for research in production and operations management. International Journal of Operations and Production Management 15(12), 6–20 (1995)CrossRefGoogle Scholar
  4. 4.
    Lummus, R., Vovurka, R.: Defining supply chain management: a historical perspective and practical guidelines. Industrial Management and Data Systems 99(1), 11–17 (1999)CrossRefGoogle Scholar
  5. 5.
    Blackstone, J., Cox, F.: APICS Dictionary, 11th edn., CFPIM, CIRM, Alexandria (2004)Google Scholar
  6. 6.
    Vollmann, T.E., Berry, W.L., Whybark, D.C.: Manufacturing Planning and Control Systems, 4th edn. McGraw-Hill, Irwin (1997)Google Scholar
  7. 7.
    Rudberg, M., Wikner, J.: Mass customization in terms of the customer order decoupling point. Production Planning & Control 15(4), 445–458 (2004)CrossRefGoogle Scholar
  8. 8.
    Hoekstra, S., Romme, J.: Integrated Logistics Structures: Developing Customer Oriented Goods Flow. McGraw-Hill, London (1992)Google Scholar
  9. 9.
    Olhager, J.: Strategic positioning of the order penetration point. International Journal of Production Economics 85(3), 319–329 (2003)CrossRefGoogle Scholar
  10. 10.
    Li, L.: The role of inventory in delivery-time competition. Management Science 38(2), 182–197 (1992)zbMATHCrossRefGoogle Scholar
  11. 11.
    Van Donk, D.P.: Make to stock or make to order: The decoupling point in the food processing industries. International Journal of Production Economics 69(3), 297–306 (2001)CrossRefGoogle Scholar
  12. 12.
    Buffa, E.S., Miller, J.G.: Production Inventory Systems: Planning and Control, 3rd edn., Homewood, IL, Irwin (1979)Google Scholar
  13. 13.
    Hax, A.C., Candea, D.: Production and Inventory Management. Prentice Hall, Englewood Cliffs (1984)Google Scholar
  14. 14.
    Silver, E.A., Pyke, D.F., Peterson, R.: Inventory Management and Production Planning and Scheduling. John Wiley and Sons, Inc., New York (1998)Google Scholar
  15. 15.
    Rushton, A., Croucher, P., Baker, P.: The handbook of logistics and distribution management. Kogan Page Publishers (2006)Google Scholar
  16. 16.
    Makridakis, S., Wheelright, S.C., Hyndman, R.J.: Forecasting: methods and applications. Wiley, Chichester (1998)Google Scholar
  17. 17.
    Armstrong, J.S., Green, K.C.: Demand Forecasting: Evidence-based Methods. In: Strategic Marketing Management: A Business Process Approach edited by Luiz Moutinho and Geoff Southern, September 14 (2005)Google Scholar
  18. 18.
    De Gooijer, J.G., Hyndman, R.J.: 25 Years of IIF Time Series Forecasting: A Selective Review. Tinbergen Institute Discussion Paper (2005)Google Scholar
  19. 19.
    Doganis, P., Aggelogiannaki, E., Sarimveis, H.: A combined model predictive control and time series forecasting framework for production-inventory systems. International Journal of Production Research 46(24), 6841–6853 (2008)CrossRefGoogle Scholar
  20. 20.
    Poler, R., Mula, J., Peidro, D.: Parameterisation of demand forecasting models through out-of-sample errors on a rolling horizon. Dirección y Organización 37, 76–82 (2009)Google Scholar
  21. 21.
    Errasti, A.: Proyecto: Sistemas de previsión de la demanda y su aplicación a la gestión de almacenes, Cluster de Transporte y Logística de Euskadi (2009)Google Scholar
  22. 22.
    Shah, C.: Model Selection in Univariate Time Series Forecasting Using Discriminant Analysis. International Journal of Forecasting 13(4), 489–500 (1997)CrossRefGoogle Scholar
  23. 23.
    Syntetos, A.A., Boylan, J.E.: The accuracy of intermittent demand estimates. International Journal of Forecasting 21, 303–314 (2005)CrossRefGoogle Scholar
  24. 24.
    Coccari, R.L., Galucci, C.: Average two best forecasts can reduce forecasting risk. Journal Business Forecasting (Fall 1984)Google Scholar
  25. 25.
    Makridakis, S.: Sliding simulation: a new approach to time series forecasting. Management Science 36, 505–512 (1990)CrossRefGoogle Scholar
  26. 26.
    Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E., Winkler, R.: The accuracy of extrapolation (time series) methods: results of a forecasting competition. Journal of Forecasting 1, 111–153 (1982)CrossRefGoogle Scholar
  27. 27.
    Stone, M.: Cross validation choice and assessment of statistical predictions. Journal of the Royal Statistical Society B36, 111–147 (1974)Google Scholar
  28. 28.
    Poler, R., Hernandez, J.E., Mula, J., Lario, F.C.: Collaborative forecasting in networked manufacturing enterprises. Journal of Manufacturing Technology Management 19(4), 514–528 (2008)CrossRefGoogle Scholar

Copyright information

© IFIP 2010

Authors and Affiliations

  • Ander Errasti
    • 1
  • Claudia Chackelson
    • 1
  • Raul Poler
    • 2
  1. 1.Industrial Organisation, Tecnun-School of engineeringUniversity of NavarraSpain
  2. 2.CIGIPUniversidad Politécnica de ValenciaSpain

Personalised recommendations