On the Probability Distribution of Typological Frequencies

  • Michael Cysouw
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6149)


Some language types are more frequent among the world’s languages than others, and the field of linguistic typology attempts to elucidate the reasons for such differences in type frequency. However, there is no consensus in that field about the stochastic processes that shape these frequencies, and there is thus likewise no agreement about the expected probability distribution of typological frequencies. This paper explains the problem and presents a first attempt to build a theory of typological probability purely based on processes of language change.


Pareto Distribution Language Structure Language Change Empirical Frequency Language Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altmann, G.: Die Entstehung diatopischer Varianten. Zeitschrift für Sprachwissenschaft 4(2), 139–155 (1985)CrossRefGoogle Scholar
  2. 2.
    Comrie, B.: Language Universals and Linguistic Typology. Blackwell, Oxford (1989)Google Scholar
  3. 3.
    Cysouw, M.: Against implicational universals. Linguistic Typology 7(1), 89–101 (2003)CrossRefGoogle Scholar
  4. 4.
    Dryer, M.S.: Order of object and verb. In: Haspelmath, M., Dryer, M.S., Gil, D., Comrie, B. (eds.) World Atlas of Language Structures, pp. 338–341. Oxford University Press, Oxford (2005)Google Scholar
  5. 5.
    Haspelmath, M., Dryer, M.S., Comrie, B., Gil, D. (eds.): The World Atlas of Language Structures. Oxford University Press, Oxford (2005)Google Scholar
  6. 6.
    Janssen, D.P., Bickel, B., Zúñiga, F.: Randomization tests in language typology. Linguistic Typology 10(3), 419–440 (2006)CrossRefGoogle Scholar
  7. 7.
    Justeson, J.S., Stephens, L.D.: On the relationship between the numbers of vowels and consonants in phonological systems. Linguistics 22, 531–545 (1984)CrossRefGoogle Scholar
  8. 8.
    Kendall, D.G.: Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded markov chain. The Annals of Mathematical Statistics 24(3), 338–354 (1953)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lehfeldt, W.: Die Verteilung der Phonemanzahl in den natürlichen Sprachen. Phonetica 31, 274–287 (1975)CrossRefGoogle Scholar
  10. 10.
    Maddieson, I.: Consonant inventories. In: Haspelmath, M., Dryer, M.S., Gil, D., Comrie, B. (eds.) World Atlas of Language Structures, pp. 10–13. Oxford University Press, Oxford (2005)Google Scholar
  11. 11.
    Maslova, E.: A dynamic approach to the verification of distributional universals. Linguistic Typology 4(3), 307–333 (2000)CrossRefGoogle Scholar
  12. 12.
    Maslova, E.: Meta-typological distributions. Sprachtypologie und Universalienforschung 61(3), 199–207 (2008)Google Scholar
  13. 13.
    Mitzenmacher, M., Upfal, E.: Probability and computing: Randomized algorithms and probabilistic analysis. Cambridge Uniersity Press, Cambridge (2005)zbMATHGoogle Scholar
  14. 14.
    Nichols, J.: Linguistic Diversity in Space and Time. University of Chicago Press, Chicago (1992)Google Scholar
  15. 15.
    Nichols, J., Barnes, J., Peterson, D.A.: The robust bell curve of morphological complexity. Linguistic Typology 10(1), 96–106 (2006)Google Scholar
  16. 16.
    Plank, F., Schellinger, W.: Dual laws in (no) time. Sprachtypologie und Universalienforschung 53(1), 46–52 (2000)Google Scholar
  17. 17.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Cysouw
    • 1
  1. 1.Max Planck Institute for Evolutionary AnthropologyLeipzig

Personalised recommendations