From End-User’s Requirements to Web Services Retrieval: A Semantic and Intention-Driven Approach

  • Isabelle Mirbel
  • Pierre Crescenzo
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 53)


In this paper, we present SATIS, a framework to derive Web Service specifications from end-user’s requirements in order to operationalise business processes in the context of a specific application domain. The aim of SATIS is to provide to neuroscientists, which are not familiar with computer science, a complete solution to easily find a set of Web Services to implement an image processing pipeline. More precisely, our framework offers the capability to capture high-level end-user’s requirements in an iterative and incremental way and to turn them into queries to retrieve Web Services description. The whole framework relies on reusable and combinable elements which can be shared out by a community of users sharing some interest or problems for a given topic. In our approach, we adopt Web semantic languages and models as a unified framework to deal with end-user’s requirements and Web Service descriptions in order to take advantage of their reasoning and traceability capabilities.


Web Services Semantic Web Intentional Modeling Rules Reuse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benatallah, B., Hacid, M.S., Rey, C., Toumani, F.: Request rewriting-based Web Service discovery. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 242–257. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Bonino da Silva Santos, L.O., Ferreira Pires, L., van Sinderen, M.J.: A Goal-Based Framework for Dynamic Service Discovery and Composition. In: International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, Porto, Portugal, July 2008, pp. 67–78 (2008)Google Scholar
  3. 3.
    Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.: Querying the semantic Web with the CORESE search engine. In: 16th European Conference on Artificial Intelligence (ECAI/PAIS), Valencia, Spain, pp. 705–709 (2008)Google Scholar
  4. 4.
    Corby, O., Dieng-Kuntz, R., Faron-Zucker, C., Gandon, F.: Searching the Semantic Web: Approximate Query Processing based on Ontologies. IEEE Intelligent Systems Journal 21(1) (2006)Google Scholar
  5. 5.
    Corby, O., Faron-Zucker, C., Mirbel, I.: Implementation of intention-driven search processes by SPARQL queries. In: 11th International Conference on Enterprise Information Systems (ICEIS), Milan, Italy (2009)Google Scholar
  6. 6.
    Dieng, R., Corby, O., Gandon, F., Giboin, A., Golebiowska, J., Matta, N., Ribière, M.: Knowledge management: Méthodes et outils pour la gestion des connaissances, dunod (2005)Google Scholar
  7. 7.
    Edelweiss Team of INRIA Sophia-Antipolis, CORESE: COnceptual REsource Search Engine (2009),
  8. 8.
    Gomez, J.M., Rico, M., Garcia-Sanchez, F.: GODO: Goal Oriented Discovery for Semantic Web Services. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Guzelian, G.: Modelisation et specification de composants réutilisables pour la conception de systèmes d’information. PhD thesis, Université Aix Marseille (2007)Google Scholar
  10. 10.
    Kaabi, R.S.: Une approche méthodologique pour la modélisation intentionnelle de services et leur opérationnalisation. PhD Thesis, Université Paris I Sorbonne (February 2007)Google Scholar
  11. 11.
    Li, L., Horrocks, I.: A Software Framework for Matchmaking Based on Semantic Web Technology. International Journal of Electronic Commerce 8(4), 39–60 (2004)Google Scholar
  12. 12.
    Martin, D., Burnstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K., McGuinness, D.L., Sirin, E., Srinivasan, N.: Bringing Semantics to Web Services with OWL-S. World Wide Web 10, 243–277 (2007)CrossRefGoogle Scholar
  13. 13.
    Nurcan, S., Edme, M.H.: Intention-driven modeling for flexible workflow applications. Journal of Software Process: Improvement and Practice 10(4) (2005)Google Scholar
  14. 14.
    OWL-S Coalition, OWL-S Specification,
  15. 15.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 333. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Prat, N.: Goal formalization and classification for requirements engineering. In: Third International Workshop on Requirements Engineering: Foundations of Software Quality (REFSQ), Barcelona, Spain (1997)Google Scholar
  17. 17.
    Prat, N.: Réutilisation de la trace par apprentissage dans un environnement pour l’ingénierie des processus. PhdThesis, Université Paris I - Sorbonne (1999)Google Scholar
  18. 18.
    Ralyt, J.: Ingénierie des méthodes à base de composants. PhD thesis, Université Paris I - Sorbonne (2001)Google Scholar
  19. 19.
    W3C, RDF: Resource Description Framework (2009),
  20. 20.
    W3C, RDF Vocabulary Description Language 1.0: RDF Schema (2004),
  21. 21.
    Rolland, C.: Conceptual Modelling in Information Systems Engineering. Springer, Heidelberg (2007)Google Scholar
  22. 22.
    W3C, SPARQL Query Language for RDF, W3C Recommendation (2008),
  23. 23.
    Stollberg, M., Norton, B.: A Refined Goal Model for Semantic Web Services. In: Second International Conference on Internet and Web Applications and Services, ICIW 2007 (2007)Google Scholar
  24. 24.
    Vukovic, M., Robinson, P.: GoalMorph: Partial Goal Satisfaction for Flexible Service Composition. In: International Conference on Next Generation Web Services Practices (2005)Google Scholar
  25. 25.
    Zhang, K., Li, Q., Sui, Q.: A Goal-driven Approach of Service Composition for Pervasive Computing. In: 1st International Symposium on Pervasive Computing and Applications, August 2006, pp. 593–598 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Isabelle Mirbel
    • 1
  • Pierre Crescenzo
    • 1
  1. 1.Laboratoire I3S (UNS/CNRS)Université de Nice Sophia-AntipolisSophia-Antipolis cedexFrance

Personalised recommendations