Knowledge Representation and Non-monotonic Reasoning

  • Laura Giordano
  • Francesca Toni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6125)


Logic programming has been deployed to support non-monotonic reasoning since the late ’80s. In this paper, we review semantics, formalisms and computational mechanisms for logic programming for non-monotonic reasoning. We also discuss some formalisms that have emerged from the cross fertilization between the two areas and some applications in as diverse areas as reasoning about dynamic domains, security, diagnosis and legal reasoning.


Logic Program Logic Programming Argumentation Framework Nonmonotonic Reasoning Situation Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: the SCIFF framework. ACM Transactions on Computational Logic (ToCL) 9(4) (2008)Google Scholar
  2. 2.
    Alferes, J.J., Dung, P.M., Pereira, L.M.: Scenario semantics of extended logic programs. In: LPNMR, pp. 334–348 (1993)Google Scholar
  3. 3.
    Antoniou, G., Baldoni, M., Bonatti, P.A., Nejdl, W., Olmedilla, D.: Rule-based policy specification. In: Secure Data Management in Decentralized Systems. Advances in Information Security, vol. 33, pp. 169–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic into logic programming. TPLP 6(6), 703–735 (2006)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Baier, J.A., McIlraith, S.A.: On planning with programs that sense. In: KR, pp. 492–502 (2006)Google Scholar
  6. 6.
    Baldoni, M., Baroglio, C., Mascardi, V., Omicini, A., Torroni, P.: Agents, Multi-Agent Systems and Declarative Programming: What, When, Where, Why, Who, How? In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy, ch. 10. LNCS, vol. 6125, pp. 204–230. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Baldoni, M., Martelli, A., Patti, V., Giordano, L.: Programming rational agents in a modal action logic. Ann. Math. Artif. Intell. 41(2-4), 207–257 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bandara, A.K., Kakas, A.C., Lupu, E.C., Russo, A.: Using argumentation logic for firewall policy specification and analysis. In: State, R., van der Meer, S., O’Sullivan, D., Pfeifer, T. (eds.) DSOM 2006. LNCS, vol. 4269, pp. 185–196. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal of Logic Programming 19, 73–148 (1994)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Baral, C., Gelfond, M.: Reasoning agents in dynamic domains, pp. 257–279 (2000)Google Scholar
  11. 11.
    Baral, C., Gelfond, M., Provetti, A.: Representing actions: Laws, observations and hypotheses. J. Log. Program. 31(1-3), 201–243 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Baral, C., McIlraith, S., Son, T.: Formulating diagnostic problem solving using an action language with narratives and sensing. In: Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR 2000), Breckenridge, Colorado, USA, April 12-15, pp. 311–322 (2000)Google Scholar
  13. 13.
    Belleghem, K.V., Denecker, M., Schreye, D.D.: On the relation between situation calculus and event calculus. J. Log. Program. 31(1-3), 3–37 (1997)zbMATHCrossRefGoogle Scholar
  14. 14.
    Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer Set Programming. In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy, ch. 8. LNCS, vol. 6125, pp. 159–182. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Bonatti, P.A.: Autoepistemic logic programming. J. Autom. Reasoning 13(1), 35–67 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Bonatti, P.A.: Reasoning with infinite stable models. Artif. Intell. 156(1), 75–111 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Bonatti, P.A., Duma, C., Fuchs, N., Nejdl, W., Olmedilla, D., Peer, J., Shahmehri, N.: Semantic web policies – A discussion of requirements and research issues. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 712–724. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence 93(1-2), 63–101 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Bondarenko, A., Toni, F., Kowalski, R.: An assumption-based framework for non-monotonic reasoning. In: Nerode, A., Pereira, L. (eds.) Proc. 2nd International Workshop on Logic Programming and Non-monotonic Reasoning, pp. 171–189. MIT Press, Cambridge (1993)Google Scholar
  20. 20.
    Buccafurri, F., Leone, N., Rullo, P.: Stable models and their computation for logic programming with inheritance and true negation. J. Log. Program. 27(1), 5–43 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Cervesato, I., Franceschet, M., Montanari, A.: A guided tour through some extensions of the Event Calculus. Computational Intelligence 16(2), 307–347 (2000)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Cervesato, I., Montanari, A.: A general modal framework for the Event Calculus and its skeptical and creduluos variants. J. Log. Program. 38(2), 111–164 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Chandra, A., Harel, D.: Horn clause queries and generalizations. Journal of Logic Programming 2(1), 1–5 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Chen, W., Warren, D.S.: Computation of stable models and its integration with logical query processing. IEEE Transactions on Knowledge and Data Engineering 8, 8–5 (1994)Google Scholar
  25. 25.
    Chittaro, L., Montanari, A., Provetti, A.: Skeptical and credoluos event calculi for supporting modal queries. In: ECAI 1994, pp. 361–365 (1994)Google Scholar
  26. 26.
    Christiansen, H., Dahl, V.: HYPROLOG: A new logic programming language with assumptions and abduction. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 159–173. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Clark, K.L.: Negation as failure. In: Logic and Data Bases. Plenum Press (1978)Google Scholar
  28. 28.
    Console, L., Dupré, D.T., Torasso, P.: A theory of diagnosis for incomplete causal models. In: IJCAI, pp. 1311–1317 (1989)Google Scholar
  29. 29.
    Console, L., Dupre, D.T., Torasso, P.: On the relationship between abduction and deduction. Journal of Logic and Computation 1(5), 661–690 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Console, L., Torasso, P.: A spectrum of logical definitions of model-based diagnosis. Computational Intelligence 7, 133–141 (1991)CrossRefGoogle Scholar
  31. 31.
    Costantini, S.: Contributions to the stable model semantics of logic programs with negation. Theor. Comput. Sci. 149(2), 231–255 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Costantini, S.: On the existence of stable models of non-stratified logic programs. TPLP 6(1-2), 169–212 (2006)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  34. 34.
    De Giacomo, G., Lesperance, Y., Levesque, H.J.: Reasoning about concurrent execution, prioritized interrupts, and exogenous actions in the situation calculus. In: IJCAI 1997: Proceedings of the Fifteenth international joint conference on Artifical intelligence, pp. 1221–1226. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  35. 35.
    De Giacomo, G., Levesque, H.J.: An incremental interpreter for high-level programs with sensing. In: Logical Foundations for Cognitive Agents, pp. 86–102. Springer, Heidelberg (1998)Google Scholar
  36. 36.
    de Kleer, J.: An assumption-based tms. Artif. Intell. 28(2), 127–162 (1986)CrossRefGoogle Scholar
  37. 37.
    Denecker, M., Bruynooghe, M., Marek, V.W.: Minimal belief and negation as failure. ACM Trans. Comput. Log. 2(4), 623–654 (2001)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Denecker, M., Dupré, D.T., Belleghem, K.V.: An inductive definition approach to ramifications. Electron. Trans. Artif. Intell. 2, 25–67 (1998)MathSciNetGoogle Scholar
  39. 39.
    Denecker, M., Kakas, A.C.: Abduction in Logic Programming. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond, Part I. LNCS (LNAI), vol. 2407, pp. 402–436. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  40. 40.
    Denecker, M., Schreye, D.D.: Representing incomplete knowledge in abductive logic programming. In: Proc. of the International Symposium on Logic Programming, pp. 147–163. MIT Press, Cambridge (1993)Google Scholar
  41. 41.
    Denecker, M., Schreye, D.D.: SLDNFA: an abductive procedure for abductive logic programs. Journal of Logic Programming 34(2), 111–167 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Dovier, A., Pontelli, E. (eds.): 25 Years of Logic Programming in Italy. LNCS, vol. 6125. Springer, Heidelberg (2010)Google Scholar
  43. 43.
    Doyle, J.: A truth maintenance system. Artif. Intell. 12(3), 231–272 (1979)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artificial Intelligence 77(2), 321–357 (1995)Google Scholar
  45. 45.
    Dung, P., Kowalski, R., Toni, F.: Assumption-based argumentation. In: Rahwan, I., Simari, G. (eds.) Argumentation in AI: The Book. Springer, Heidelberg (2009) (to appear)Google Scholar
  46. 46.
    Dung, P.M.: Negations as hypotheses: An abductive foundation for logic programming. In: ICLP, pp. 3–17 (1991)Google Scholar
  47. 47.
    Dung, P.M.: Representing actions in logic programming and its applications in database updates. In: ICLP, pp. 222–238 (1993)Google Scholar
  48. 48.
    Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artificial Intelligence 171(10-15), 642–674 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In: ICLP, pp. 234–254 (1989)Google Scholar
  50. 50.
    Fitting, M.: A Kripke/Kleene semantics for logic programs. Journal of Logic Programming 2, 295–312 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic programming. Journal of Logic Programming 33(2), 151–165 (1998)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Gabbay, D.M., Giordano, L., Martelli, A., Olivetti, N., Sapino, M.L.: Conditional reasoning in logic programming. J. Log. Program. 44(1-3), 37–74 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Gaertner, D., Toni, F.: Hybrid argumentation and its properties. In: Hunter, A. (ed.) Proceedings of the Second International Conference on Computational Models of Argument (COMMA 2008), pp. 183–195. IOS Press, Amsterdam (2008)Google Scholar
  54. 54.
    García, A.J., Dix, J., Simari, G.R.: Argument-based logic programming. In: Rahwan, I., Simari, G. (eds.) Argumentation in AI: The Book. Springer, Heidelberg (2009) (to appear)Google Scholar
  55. 55.
    Gavanelli, M., Rossi, F.: Constraint Logic Programming. In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy, ch. 4. LNCS, vol. 6125, pp. 64–86. Springer, Heidelberg (2010)Google Scholar
  56. 56.
    Gelder, A.V., Ross, K.A., Schlipf, J.S.: Unfounded sets and well-founded semantics for general logic programs. In: PODS, pp. 221–230 (1988)Google Scholar
  57. 57.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  58. 58.
    Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. Journal of logic Programming 17, 301–322 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on AI 3(16), 193–210 (1998)MathSciNetGoogle Scholar
  60. 60.
    Giacomo, G.D., Lenzerini, M.: PDL-based framework for reasoning about actions. In: AI*IA, pp. 103–114 (1995)Google Scholar
  61. 61.
    Giordano, L., Martelli, A.: Generalized stable models, truth maintenance and conflict resolution. In: ICLP, pp. 427–441 (1990)Google Scholar
  62. 62.
    Giordano, L., Martelli, A., Schwind, C.: Ramification and causality in a modal action logic. J. Log. Comput. 10(5), 625–662 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Giordano, L., Martelli, A., Schwind, C.: Specifying and verifying interaction protocols in a temporal action logic. J. Applied Logic 5(2), 214–234 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Giordano, L., Olivetti, N.: Combining negation as failure and embedded implications in logic programs. J. Log. Program. 36(2), 91–147 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artif. Intell. 153(1-2), 49–104 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary report. In: AAAI/IAAI, pp. 623–630 (1998)Google Scholar
  67. 67.
    Governatori, G.: Representing business contracts in ruleml. Int. J. Cooperative Information Systems 14(2-3), 180–216 (2005)Google Scholar
  68. 68.
    Governatori, G., Rotolo, A.: Defeasible logic: Agency, intention and obligation. In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 114–128. Springer, Heidelberg (2004)Google Scholar
  69. 69.
    Greco, S., Lisi, F.: Logic Programming Languages for Databases and the Web. In: Dovier, A., Pontelli, E. (eds.) 25 Years of Logic Programming in Italy, ch. 9. LNCS, vol. 6125, pp. 183–203. Springer, Heidelberg (2010)Google Scholar
  70. 70.
    Hanks, S., McDermott, D.V.: Nonmonotonic logic and temporal projection. Artif. Intell. 33(3), 379–412 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Kakas, A., Mancarella, P.: Generalized stable models: A semantics for abduction. In: ECAI, pp. 385–391 (1990)Google Scholar
  72. 72.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. Journal of Logic and Computation 2(6), 719–770 (1993)CrossRefMathSciNetGoogle Scholar
  73. 73.
    Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. OUP (1998)Google Scholar
  74. 74.
    Kakas, A.C., Mancarella, P.: Generalized stable models: a semantics for abduction. In: Proceedings of the 9th European Conference on Artificial Intelligence, pp. 385–391 (1990)Google Scholar
  75. 75.
    Kakas, A.C., Mancarella, P.: Short note: Preferred extensions are partial stable models. J. Log. Program. 14(3&4), 341–348 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Kakas, A.C., Van Nuffelen, B., Denecker, M.: A-system: Problem solving through abduction. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, pp. 591–596 (2001)Google Scholar
  77. 77.
    Kifer, M.: Nonmonotonic Reasoning in FLORA-2. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 1–12. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  78. 78.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4(1), 67–95 (1986)CrossRefGoogle Scholar
  79. 79.
    Kowalski, R.A.: Predicate logic as programming language. In: IFIP Congress, pp. 569–574 (1974)Google Scholar
  80. 80.
    Kowalski, R.A., Kuehner, D.: Linear resolution with selection function. Artif. Intell. 2(3/4), 227–260 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  81. 81.
    Kowalski, R.A., Toni, F.: Abstract argumentation. Artif. Intell. Law 4(3-4), 275–296 (1996)CrossRefGoogle Scholar
  82. 82.
    Kunen, K.: Negation in logic programming. Journal of Logic Programming 4(4), 289–308 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  83. 83.
    Kunen, K.: Signed data dependencies in logic programs. J. Log. Program. 7(3), 231–245 (1989)CrossRefMathSciNetGoogle Scholar
  84. 84.
    Leone, N., Rullo, P.: Ordered logic programming with sets. J. Log. Comput. 3(6), 621–642 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: Golog: A logic programming language for dynamic domains. Journal of Logic Programming 31, 59–83 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    Li, R., Pereira, L.M.: Representing and reasoning about concurrent actions with abductive logic programs. Ann. Math. Artif. Intell. 21(2-4), 245–303 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    Lifschitz, V.: Minimal belief and negation as failure. Artificial Intelligence 70(1-2), 53–72 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  88. 88.
    Lin, F.: Embracing causality in specifying the indirect effects of actions. In: IJCAI, pp. 1985–1993 (1995)Google Scholar
  89. 89.
    Lloyd, J.W.: Foundations of Logic Programming, 1st edn. Springer, Heidelberg (1984)zbMATHGoogle Scholar
  90. 90.
    Mancarella, P., Terreni, G., Sadri, F., Toni, F., Endriss, U.: The CIFF proof procedure for abductive logic programming with constraints: Theory, implementation and experiments. Theory and Practice of Logic Programming 9(6), 691–750 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  91. 91.
    McCain, N., Turner, H.: A causal theory of ramifications and qualifications. In: IJCAI, pp. 1978–1984 (1995)Google Scholar
  92. 92.
    McCarthy, J.: Situations actions and causal laws. Technical Report. Stanford (1963); Reprinted in Semantic Information Processing (Minsky, M. (ed.)), pp. 410-417. MIT Press, Cambridge (1968)Google Scholar
  93. 93.
    McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artificial Intelligence 13, 27–39 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  94. 94.
    McDermott, D.V.: Nonmonotonic logic ii: Nonmonotonic modal theories. J. ACM 29(1), 33–57 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    Minker, J.: An overview of nonmonotonic reasoning and logic programming. Journal of Logic Programming, Special Issue 17, 95–126 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  96. 96.
    Moore, R.C.: Semantical considerations on nonmonotonic logic. Artif. Intell. 25(1), 75–94 (1985)zbMATHCrossRefGoogle Scholar
  97. 97.
    Nebel, B.: Belief revision and default reasoning: Syntax-based approaches. In: KR, pp. 417–428 (1991)Google Scholar
  98. 98.
    Niemel, I., Simons, P.: Efficient implementation of the well-founded and stable model semantics. In: Proceedings of the Joint International Conference and Symposium on Logic Programming, pp. 289–303. MIT Press, Cambridge (1996)Google Scholar
  99. 99.
    Nitta, K., Shibasaki, M.: Defeasible reasoning in japanese criminal jurisprudence. Artif. Intell. Law 5(1-2), 139–159 (1997)CrossRefGoogle Scholar
  100. 100.
    Noël, V., Kakas, A.C.: Gorgias-c: Extending argumentation with constraint solving. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 535–541. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  101. 101.
    Nute, D.: Defeasible logic. In: Bartenstein, O., Geske, U., Hannebauer, M., Yoshie, O. (eds.) INAP 2001. LNCS (LNAI), vol. 2543, pp. 87–114. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  102. 102.
    Pednault, E.P.D.: Adl: Exploring the middle ground between strips and the situation calculus. In: KR, pp. 324–332 (1989)Google Scholar
  103. 103.
    Pereira, L.M., Alferes, J.J., Aparício, J.N.: Contradiction removal semantics with explicit negation. In: Masuch, M., Polos, L. (eds.) Logic at Work 1992. LNCS, vol. 808. Springer, Heidelberg (1994)Google Scholar
  104. 104.
    Poole, D.: A logical framework for default reasoning. Artif. Intell. 36(1), 27–47 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  105. 105.
    Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in legal reasoning. Artif. Intell. Law 4(3-4), 331–368 (1996)CrossRefGoogle Scholar
  106. 106.
    Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-classical Logics 7, 25–75 (1997)zbMATHMathSciNetGoogle Scholar
  107. 107.
    Prakken, H., Sartor, G.: The Role of Logic in Computational Models of Legal Argument: A Critical Survey. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond, Part II. LNCS (LNAI), vol. 2408, pp. 342–381. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  108. 108.
    Prakken, H., Sartor, G.: Formalising arguments about the burden of persuasion. In: ICAIL-The Eleventh International Conference on Artificial Intelligence and Law, Proceedings of the Conference, Stanford Law School, Stanford, California, USA, June 4-8, pp. 97–106. ACM, New York (2007)CrossRefGoogle Scholar
  109. 109.
    Preist, C., Eshghi, K.: Consistency-based and abductive diagnoses as generalised stable models. In: FGCS, pp. 514–521 (1992)Google Scholar
  110. 110.
    Prendinger, H., Schurz, G.: Reasoning about action and change. A dynamic logic approach. Journal of Logic, Language and Information 5(2), 209–245 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  111. 111.
    Przymusinski, T.C.: Perfect model semantics. In: ICLP/SLP, pp. 1081–1096 (1988)Google Scholar
  112. 112.
    Przymusinski, T.C.: Extended stable semantics for normal and disjunctive programs. In: ICLP, pp. 459–477 (1990)Google Scholar
  113. 113.
    Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 55–76 (1977)Google Scholar
  114. 114.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  115. 115.
    Reiter, R.: Circumscription implies predicate completion (sometimes). In: AAAI, pp. 418–420 (1982)Google Scholar
  116. 116.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  117. 117.
    Reiter, R.: Knowledge in action. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  118. 118.
    Saccà, D., Zaniolo, C.: Stable models and non-determinism in logic programs with negation. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Nashville, Tennessee, April 2-4, pp. 205–217. ACM Press, New York (1990)CrossRefGoogle Scholar
  119. 119.
    Sadri, F., Kowalski, R.A.: Variants of the event calculus. In: ICLP, pp. 67–81 (1995)Google Scholar
  120. 120.
    Sadri, F., Toni, F.: Interleaving belief updating and reasoning in abductive logic programming. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy, 28 August–1 September 2006. IOS Press, Amsterdam (2006)Google Scholar
  121. 121.
    Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.: The british nationality act as a logic program. Commun. ACM 29(5), 370–386 (1986)CrossRefGoogle Scholar
  122. 122.
    Shanahan, M.: Solving the frame problem: A mathematical investigation of the common sense law of inertia. MIT Press, Cambridge (1997)Google Scholar
  123. 123.
    Shanahan, M.: An abductive event calculus planner. J. Log. Program. 44(1-3), 207–240 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  124. 124.
    Shepherdson, J.C.: Negation as failure: A comparison of clark’s completed data base and reiter’s closed world assumption. J. Log. Program. 1(1), 51–79 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  125. 125.
    Shepherdson, J.C.: Negation as failure ii. J. Log. Program. 2(3), 185–202 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  126. 126.
    Thielscher, M.: Ramification and causality. Artif. Intell. 89(1-2), 317–364 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  127. 127.
    Thielscher, M.: From situation calculus to fluent calculus: State update axioms as a solution to the inferential frame problem. Artif. Intell. 111(1-2), 277–299 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  128. 128.
    Toni, F.: A semantics for the Kakas-Mancarella procedure for abductive logic programming. In: Alpuente, M., Sessa, M.I. (eds.) 995 Joint Conference on Declarative Programming, GULP-PRODE 1995, Marina di Vietri, Italy, September 11-14, pp. 231–244 (1995)Google Scholar
  129. 129.
    Van Gelder, A., Ross, K., Schlifp, J.: The well-founded semantics for general logic programs. Journal of ACM 38(3), 620–650 (1991)zbMATHGoogle Scholar
  130. 130.
    Witteveen, C., Brewka, G.: Skeptical reason maintenance and belief revision. Artif. Intell. 61(1), 1–36 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  131. 131.
    You, J.-H., Cartwright, R., Li, M.: Iterative belief revision in extended logic programming. Theoretical Computer Science, 170–171 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Laura Giordano
    • 1
  • Francesca Toni
    • 2
  1. 1.Università del Piemonte OrientaleItaly
  2. 2.Imperial College LondonUK

Personalised recommendations