PARAM: A Model Checker for Parametric Markov Models

  • Ernst Moritz Hahn
  • Holger Hermanns
  • Björn Wachter
  • Lijun Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6174)


We present PARAM 1.0, a model checker for parametric discrete-time Markov chains (PMCs). PARAM can evaluate temporal properties of PMCs and certain extensions of this class. Due to parametricity, evaluation results are polynomials or rational functions. By instantiating the parameters in the result function, one can cheaply obtain results for multiple individual instantiations, based on only a single more expensive analysis. In addition, it is possible to post-process the result function symbolically using for instance computer algebra packages, to derive optimum parameters or to identify worst cases.


  1. 1.
    Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition systems for system design and analysis. FAC 19, 93–109 (2007)zbMATHCrossRefGoogle Scholar
  2. 2.
    Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. In: Păsăreanu, C.S. (ed.) SPIN. LNCS, vol. 5578, pp. 88–106. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. STTT (2010) doi: 10.1007/s10009-010-0146-xGoogle Scholar
  4. 4.
    Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans. Inf. Syst. Secur. 1, 66–92 (1998)CrossRefGoogle Scholar
  5. 5.
    Shmatikov, V.: Probabilistic model checking of an anonymity system. Journal of Computer Security 12, 355–377 (2004)Google Scholar
  6. 6.
    Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation, SIGACT News, 2nd edn., vol. 32, pp. 60–65 (2001)Google Scholar
  9. 9.
    Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87, 309–315 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Holzmann, G.: SPIN model checker, The: primer and reference manual. Addison-Wesley Professional, Reading (2003)Google Scholar
  12. 12.
    Abbott, J.: The design of CoCoALib. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 205–215. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Derisavi, S.: Signature-based symbolic algorithm for optimal Markov chain lumping. In: QEST, pp. 141–150 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ernst Moritz Hahn
    • 1
  • Holger Hermanns
    • 1
    • 2
  • Björn Wachter
    • 1
  • Lijun Zhang
    • 3
  1. 1.Computer ScienceSaarland UniversitySaarbrückenGermany
  2. 2.INRIA Grenoble – Rhône-AlpesFrance
  3. 3.DTU InformaticsTechnical University of DenmarkDenmark

Personalised recommendations