Synthesis of Quantized Feedback Control Software for Discrete Time Linear Hybrid Systems

  • Federico Mari
  • Igor Melatti
  • Ivano Salvo
  • Enrico Tronci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6174)

Abstract

We present an algorithm that given a Discrete Time Linear Hybrid System\({\cal H}\) returns a correct-by-construction software implementation K for a (near time optimal) robust quantized feedback controller for \({\cal H}\) along with the set of states on which K is guaranteed to work correctly (controllable region). Furthermore, K has a Worst Case Execution Time linear in the number of bits of the quantization schema.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. on Embedded Computing Sys. 5(1), 152–199 (2006)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded systems. IEEE Trans. Softw. Eng. 22(3), 181–201 (1996)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Madhusudan, P.: Decision problems for timed automata: A survey. In: SFM, pp. 1–24 (2004)Google Scholar
  5. 5.
    Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of switching controllers for linear systems. Proc. of the IEEE 88(7), 1011–1025 (2000)CrossRefGoogle Scholar
  6. 6.
    Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Attie, P.C., Arora, A., Emerson, E.A.: Synthesis of fault-tolerant concurrent programs. ACM Trans. on Program. Lang. Syst. 26(1), 125–185 (2004)CrossRefGoogle Scholar
  8. 8.
    Bemporad, A., Giorgetti, N.: A sat-based hybrid solver for optimal control of hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 126–141. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Bouyer, P., Brihaye, T., Chevalier, F.: O-minimal hybrid reachability games. Logical Methods in Computer Science 6(1:1) (January 2010)Google Scholar
  10. 10.
    Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Trans. on Computers C-35(8), 677–691 (1986)CrossRefGoogle Scholar
  11. 11.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Cimatti, A., Roveri, M., Traverso, P.: Strong planning in non-deterministic domains via model checking. In: AIPS, pp. 36–43 (1998)Google Scholar
  13. 13.
    Dominguez-Garcia, A., Krein, P.: Integrating reliability into the design of fault-tolerant power electronics systems. In: PESC, pp. 2665–2671. IEEE, Los Alamitos (2008)Google Scholar
  14. 14.
    Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans. on Automatic Control 50(11), 1698–1711 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond hytech: Hybrid systems analysis using interval numerical methods. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 582–593. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. of Computer and System Sciences 57(1), 94–124 (1998)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Jha, S., Brady, B.A., Seshia, S.A.: Symbolic reachability analysis of lazy linear hybrid automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 241–256. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Liu, X., Ding, H., Lee, K., Wang, Q., Sha, L.: Ortega: An efficient and flexible software fault tolerance architecture for real-time control systems. IEEE Trans. On: Industrial Informatics 4(4) (November 2008)Google Scholar
  22. 22.
    Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from bounded-response properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 95–107. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Mari, F., Melatti, I., Salvo, I., Tronci, E.: Synthesis of quantized feedback control software for discrete time linear hybrid systems. Technical report, Computer Science Department, La Sapienza University of Rome (January 2010)Google Scholar
  24. 24.
    Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer programming. Mathematical Programming, Ser. A 99, 283–296 (2004)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Olivero, A., Sifakis, J., Yovine, S.: Using abstractions for the verification of linear hybrid systems. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 81–94. Springer, Heidelberg (1994)Google Scholar
  26. 26.
    So, W.-C., Tse, C., Lee, Y.-S.: Development of a fuzzy logic controller for dc/dc converters: design, computer simulation, and experimental evaluation. IEEE Trans. on Power Electronics 11(1), 24–32 (1996)CrossRefGoogle Scholar
  27. 27.
    Tabuada, P., Pappas, G.J.: Linear time logic control of linear systems. IEEE Trans. on Automatic Control (2004)Google Scholar
  28. 28.
    Tomlin, C., Lygeros, J., Sastry, S.: Computing controllers for nonlinear hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 238–255. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  29. 29.
    Tronci, E.: Automatic synthesis of controllers from formal specifications. In: ICFEM, p. 134. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  30. 30.
    Wong-Toi, H.: The synthesis of controllers for linear hybrid automata. In: CDC, vol. 5, pp. 4607–4612 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Federico Mari
    • 1
  • Igor Melatti
    • 1
  • Ivano Salvo
    • 1
  • Enrico Tronci
    • 1
  1. 1.Dip. di InformaticaSapienza Università di RomaRomaItaly

Personalised recommendations