Advertisement

Petruchio: From Dynamic Networks to Nets

  • Roland Meyer
  • Tim Strazny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6174)

Abstract

We introduce Petruchio, a tool for computing Petri net translations of dynamic networks. To cater for unbounded architectures beyond the capabilities of existing implementations, the principle fixed-point engine runs interleaved with coverability queries. We discuss algorithmic enhancements and provide experimental evidence that Petruchio copes with models of reasonable size.

References

  1. 1.
    Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic abstraction for programs with dynamic memory heaps. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 341–354. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Čerans, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of programs with well quasi-ordered domains. Inf. Comp. 160(1-2), 109–127 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Busi, N., Gorrieri, R.: Distributed semantics for the π-calculus based on Petri nets with inhibitor arcs. JLAP 78(1), 138–162 (2009)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Devillers, R., Klaudel, H., Koutny, M.: A compositional Petri net translation of general π-calculus terms. For Asp. Comp. 20(4-5), 429–450 (2008)zbMATHCrossRefGoogle Scholar
  5. 5.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! TCS 256(1-2), 63–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
  7. 7.
    Hirschkoff, D.: An extensional spatial logic for mobile processes. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 325–339. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Joshi, S., König, B.: Applying the graph minor theorem to the verification of graph transformation systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 214–226. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Khomenko, V., Koutny, M., Niaouris, A.: Applying Petri net unfoldings for verification of mobile systems. In: MOCA, Bericht FBI-HH-B-267/06, pp. 161–178. University of Hamburg (2006)Google Scholar
  10. 10.
    Khomenko, V., Meyer, R.: Checking π-calculus structural congruence is graph isomorphism complete. In: ACSD, pp. 70–79. IEEE, Los Alamitos (2009)Google Scholar
  11. 11.
    König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the analysis of graph transformation systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 197–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    König, B., Kozioura, V.: Incremental construction of coverability graphs. IPL 103(5), 203–209 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
  14. 14.
    Meyer, R.: A theory of structural stationarity in the π-calculus. Acta Inf. 46(2), 87–137 (2009)zbMATHCrossRefGoogle Scholar
  15. 15.
    Meyer, R., Gorrieri, R.: On the relationship between π-calculus and finite place/transition Petri nets. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 463–480. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Meyer, R., Khomenko, V., Strazny, T.: A practical approach to verification of mobile systems using net unfoldings. Fund. Inf. 94(3-4), 439–471 (2009)zbMATHMathSciNetGoogle Scholar
  17. 17.
  18. 18.
    Orava, F., Parrow, J.: An algebraic verification of a mobile network. For. Asp. Comp. 4(6), 497–543 (1992)zbMATHCrossRefGoogle Scholar
  19. 19.
  20. 20.
    Rensink, A.: Canonical graph shapes. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 401–415. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM TOPLAS 24(3), 217–298 (2002)CrossRefGoogle Scholar
  22. 22.
    Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification of ad hoc routing protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 18–32. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Spatial Logic Model Checker, http://ctp.di.fct.unl.pt/SLMC/
  24. 24.
    Wies, T., Zuffrey, D., Henzinger, T.A.: Forward analysis of depth-bounded processes. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Roland Meyer
    • 1
  • Tim Strazny
    • 2
  1. 1.LIAFA & CNRS 
  2. 2.University of Oldenburg 

Personalised recommendations