Advertisement

Efficient Emptiness Check for Timed Büchi Automata

  • Frédéric Herbreteau
  • B. Srivathsan
  • Igor Walukiewicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6174)

Abstract

The Büchi non-emptiness problem for timed automata concerns deciding if a given automaton has an infinite non-Zeno run satisfying the Büchi accepting condition. The standard solution to this problem involves adding an auxiliary clock to take care of the non-Zenoness. In this paper, we show that this simple transformation may sometimes result in an exponential blowup. We propose a method avoiding this blowup.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Decision problems for timed automata: A survey. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Behrmann, G., David, A., Larsen, K.G., Haakansson, J., Pettersson, P., Yi, W., Hendriks, M.: Uppaal 4.0. In: QEST’06, pp. 125–126 (2006)Google Scholar
  4. 4.
    Bérard, B., Bouyer, B., Petit, A.: Analysing the pgm protocol with UPPAAL. Int. Journal of Production Research 42(14), 2773–2791 (2004)CrossRefGoogle Scholar
  5. 5.
    Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time petri nets. In: IFIP Congress, pp. 41–46 (1983)Google Scholar
  6. 6.
    Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in System Design 24(3), 281–320 (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a mode-checking tool for real-time systems. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Daws, C., Tripakis, S.: Model checking of real-time reachability properties using abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)Google Scholar
  10. 10.
    Gaiser, A., Schwoon, S.: Comparison of algorithms for checking emptiness on büchi automata. In: MEMICS’09, pp. 69–77 (2009)Google Scholar
  11. 11.
    Gómez, R., Bowman, H.: Efficient detection of zeno runs in timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 195–210. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Havelund, K., Skou, A., Larsen, K., Lund, K.: Formal modeling and analysis of an audio/video protocol: An industrial case study using UPPAAL. In: RTSS’97, pp. 2–13 (1997)Google Scholar
  13. 13.
    Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller synthesis for climate controller using UPPAAL TiGA. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 227–240. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Tripakis, S.: Verifying progress in timed systems. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 299–314. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Tripakis, S.: Checking timed büchi emptiness on simulation graphs. ACM Transactions on Computational Logic 10(3) (2009)Google Scholar
  17. 17.
    Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed büchi automata emptiness efficiently. Formal Methods in System Design 26(3), 267–292 (2005)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frédéric Herbreteau
    • 1
  • B. Srivathsan
    • 1
  • Igor Walukiewicz
    • 1
  1. 1.LaBRI(Université de Bordeaux -CNRS) 

Personalised recommendations